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Abstract—Quantum machine learning recently gained promi-
nence due to the promise of quantum computers in solving
machine learning problems that are intractable on a classical
computer. Nevertheless, several studies on problems which re-
main challenging for classical computing algorithms are emerg-
ing. One of these is classifying continuously incoming data
instances in online fashion, which is studied in this paper through
a hybrid computational solution that combines classical and
quantum techniques. Hybrid approaches represents one of the
current ways for the use of quantum computation in practical
applications.

In this paper, we show how typical issues of online learning can
be equally addressed with the properties of quantum mechanics,
until to offer often better results. We propose the combined use
of quantum supervised algorithms (variational quantum circuits)
and techniques of quantum unsupervised algorithms (distance
estimation). We aim at keeping the classification capabilities,
which have learned on previously processed data instances,
preserved as much as possible, and then acquiring new knowledge
on new data instances. Experiments are performed on real-world
datasets with quantum simulators.

Index Terms—Quantum supervised learning; Quantum unsu-
pervised learning; Hybrid quantum-classical framework; Online
learning

I. INTRODUCTION

Quantum machine learning has been introduced with the
promise to handle machine learning problems that are in-
tractable on a classical computer, especially those character-
ized by huge amounts of data. In the research on Quantum
computing technologies, the current status sees the era of noisy
intermediate scale quantum (NISQ) computers [1], which are
devices able to deal with low-middle size data problems. An
approach which seems bringing practical advantages is instead
the one of hybrid frameworks [2] that combine classical
and quantum methods and allow to exploit quantum physics
properties while limiting the impact of the existing restrictions
of the quantum devices.

One of the categories of data-intensive problems in which
the research on classical computing dedicates still many efforts
is learning of models from continuously incoming sequential
data. Even the accurate solutions of Deep Learning find chal-
lenging working on that data scenario. This is demonstrated
by the quite recentest studies to address the so-called catas-
trophic forgetting [3], which is the tendency of an artificial

neural network to abruptly and drastically forget previously
learned information upon learning new information. In those
cases, it is not important designing algorithms for massive
computation, but keeping the quality of the models high over
unbounded sequences of data.

We investigate these points through a quantum-classical
framework which build a classification model in the super-
vised setting and works in online learning [4] by acquiring
continuously incoming data instances. The framework adapts
continually a classification model and keeps on learning over
time. More precisely, it trains and updates a classifier on
(sub-) sequences of incoming data instances (data blocks)
marked as labelled. Then, the classifier is used to estimate
the class-value of unlabelled incoming data instances. The
update is performed only when the properties and distribution
of the labelled data changes. To detect such changes, we rely
on a quantum centroid distance estimation technique, often
used in quantum clustering. Indeed, the clusters gather the
labelled data for each class that are therefore synthesized in
the respective centroids. So, the changes are detected when
the properties of the clusters change and this happens when
the labelled data (assigned to the respective clusters) change.
The classification model needs to be updated on those data.

The framework has been tested on the binary classification
task by using two real-world datasets. The data size of these
experiments is of the same order of the magnitude, or even
higher, of the one used in the related works [5], [6]. It has
been also compared against a classical computing algorithm
working in online setting. The experimental results are encour-
aging and show the potential superiority in terms of accurate
estimations over different experimental configurations.

II. QUANTUM-CLASSICAL FRAMEWORK FOR BINARY
CLASSIFICATION

The overall framework (illustrated in Figure 1) relies on
the classical computing techniques of feature selection, data
sampling, normalization and model optimization. On the quan-
tum side, it integrates quantum encoding techniques, quantum
neural networks in the form of variational quantum circuits
for the problem of binary classification and quantum dis-
tance estimation.The framework faces a binary classification
problem, which can be formulated as follows. We have data



Fig. 1. The components of the proposed hybrid framework as they run in
online learning setting for binary classification.

instances described by X ∪ y, X are values of the set X of
descriptive attributes/features, while y ∈ {−1, 1} denotes the
class label. The framework operates in online learning, which
leads to alternate training sessions, where we have labelled
data blocks, to prediction sessions, where the data instances
have no class label. The succession of training sessions and
prediction sessions is not predefined, coherently with the real-
istic assumption according to which the distribution of labelled
and unlabelled data instances is not previously established and
therefore not all the data instances are labelled.

In the following, we first provide a short description of each
component and then describe how these work in the whole
framework.

Feature selection operates only at the beginning and selects
the subset of descriptive features which we will consider after-
wards. It exploits a technique based on the mutual information
between the class labels.

Normalization scales the values of the previously selected
features within the range of [0,1] by using the standard min-
max function on the original ranges. It is performed for each
incoming data block, both those of training and those of
prediction.

Data sampling selects a subset of the labelled data instances
within the previously data block of training session. The
samples will contain data instances of both the class labels and,
for each class label, the component takes data instances with
simple random techniques without replacement. The sample
size is fixed.

Quantum Centroid Distance Estimation operates only
on the labelled data instances and allows us to detect drift
within data. Distance estimation is a standard operation in the
blueprint of the distance-based clustering, and, in this work,
is used specifically to build centroids. In this work, there is
no clustering procedure as it is typically defined, but we use
two centroids to synthesize the properties of the data instances
of the two class labels and distance estimation to compute the
distance between the centroids and the labelled data instances.
More precisely, the centroids represent class prototypes and
are used to identify the data instances which present concept
(class) drift. The two centroids will be recomputed depen-
dently on the drifts present in the incoming data instances. To

implement these operations we resort to the design decisions
proposed in [7] which implements the centroid distance esti-
mation through SWAP gates, arranges centroids over quantum
RAM structures and offers computations of the distances in
superposition.

Quantum Classification works in two modalities, training
and prediction. It is implemented through two quantum circuits
with a number of qubits determined by the number features
selected by Feature selection.

The first quantum circuit takes the classical data and repre-
sents them as quantum states to be assigned to the qubits.
More precisely, this circuit implements a feature mapping
operation F which encodes real-valued data instances X into
quantum states spanning d qubits: |ψ(X)⟩ = F(X)|0⟩⊗d,
where, |0⟩⊗d denotes the register with d-qubits at the state
|0⟩ (|0⟩⊗ . . .⊗|0⟩). In this work, F has been implemented as
follows: Rz

⊗d(X)H⊗d|0⟩⊗d, where, the parameter for each
gate Rz is the normalized real-valued of of the feature (cor-
responding to the qubit on which Rz works). The term H⊗d

denotes the tensor product H ⊗ . . .⊗H over d occurrences
(that is, the number of selected features) of the gate H (the
same holds for Rz).

The second circuit is variational and manipulates the
quantum states returned by the first circuit. It implements
a quantum neural network composed of layers of entangled
rotation gates. Generally, entangled rotation gates are matrix
operations which combine the gates Hadamard, CNOT and
Rotation under the quantum physics effect of the entanglement
[8]. The second circuit with the first completes the structure of
gates which builds the classifier ϕ: |ϕ(X, θ)⟩ = V(θ)|ψ(X)⟩,
where, V is the variational circuit, θ denotes the parameters
of the parameterized gates that being optimized. In this work,
V has been implemented as follows: Ry

⊗dCX⊗dRy
⊗d,

where, each occurrence of the two-qubit gate CX takes one
pair of qubits (over the d-qubit register) composed by the
consecutive qubits indexed as i and i+ 1.

Finally, we perform measurements on the qubits and the
measured state is recorded. So, we can estimate the ex-
pectation value of the circuit on x and θ, by measuring
the state over multiple runs, with the following |E(X, θ) =
⟨ϕ(X, θ)|σ⊗dz |ϕ(X, θ)⟩, where, σ⊗dz is the tensor product of
the single qubit gate σz over d occurrences. The gate σz has
the interesting property that if the measured quantum state
has odd parity, it returns -1 (as eigenvalue), while, if the
measured quantum state has even parity, it returns 1. This
implies that the expectation value of the circuit will always be
within the interval [−1, 1]. We can use this property to relate
the expectation value to the probability that a data instance X
being assigned to a class label y, that is: P (y|X) = yE(X,θ)+1

2 .
The probability P(y|X) is exploited in the optimization pro-

cess concerning the parameters θ. In particular, the optimizer
iteratively updates the circuit parameters by minimizing a cost
function, which accounts for the negative log-likelihood of the
probabilities P(y|X) computed on the current labelled data-
blocks, that is: − 1

size

∑size
i=1 log(P (yi|Xi)), where, size is the



number of data instances of the data block.
The cost function is minimized by a classical computing

optimizer based on gradient descent. The derivative concerns
the expectation value E() with respect to the current values of
θ and is computed by means of the parameter shift rule [9]:
dE
dθ = E(θ+ϵ)−E(θk−ϵ)

2
The gradient value is the difference between the two output

values of the circuit: the first value is the output of the circuit
with the parameter θk increased by a value ϵ, and the second
value is the parameter θk decreased by ϵ.

Online learning. Learning classification models on con-
tinuously incoming data can be faced with time-windows
models [10] in online setting. Time-windows models allows
us to handle data instances by equally-sized blocks on which
we train, update and apply the predictive capabilities of the
classifier. During a training session, the training modality
of Quantum classification is activated, which implies the
execution the feature mapping F on the data instances of the
current data block and optimization process of the parameters
θ of the variational circuit V . During a prediction session, the
Quantum classification only estimates the class labels on the
current data block by using the classification model up there
updated.

To keep the classifier updated, we have to deal with the
catastrophic forgetting effect raising when updating neural
networks. In the literature, three alternatives are mainly sug-
gested, replay methods, regularization-based methods, pa-
rameter isolation methods [11]. Considering that the replay
methods represent the solution which asks for less and leaves
unchanged the number of hyper-parameters of the neural
network, we lean for this approach.

The framework operates in three steps, namely initialization,
update, prediction. Training sessions are performed at the
initialization and update. In the initialization step, the classifier
is trained from scratch on the first data block DB1 (Figure
1). The operation of Feature selection is used only at the
initialization step, so the other steps of the framework work
on the features before selected. Still at the initialization,
two centroids, one for each class label, are determined from
the labelled data instances of the data block DB1. As new
labelled data blocks will be acquired, the centroids will be re-
computed. It should be clarified that the data represented used
for quantum distance is amplitude encoding, which is different
from the feature mapping used for the Quantum classification.
The rationale behind is to use a different representational
space in order to capture a different characteristics of the data
from those expressed by the feature mapping of the Quantum
classification.

Next, the framework prepares the steps of update and
prediction by collecting labelled data instances and unlabelled
data instances for two different data blocks. Afterwards, we
will term them as DBi and DBj respectively. As soon as
one of the two data blocks is being filled (the number of
collected data instances is equal to the predefined size), the
respective step is performed. By supposing the data block DBi

of labelled data instances is completed for first, the update step

will be performed, otherwise it will be the turn of prediction
step to work on DBj . Clearly, the data block DBj contains
(unlabelled) data instances, in the order they arrive. When the
update step starts, it first checks for possible concept drifts
within the current data block, and, if any is present, it updates
the classification model. To check the presence of drifts, we
rely on classical computing technique, that is Page-Hinkley
test [12], which, in this work, detects changes over time in
the characteristics of the two clusters. As indicator of the
characteristics of the clusters, we use sum of the squared er-
rors SSE :

∑
instanceh∈DBi

distance(ck, instanceh) (DBi

current data block, ck centroids), where the distance is the
one introduced in Quantum Centroid Distance Estimation. This
way, the Page-Hinkley test reveals the presence of drift if the
SSE on the current data instances greatly differs from the one
computed on the data instances previously processed. When
this happens the two centroids are recomputed considering the
new data instances and the classification model is updated. The
training set used for the current learning round is composed
of data instances of the current data block and those provided
by the component of Data sampling. As explained above, this
is done to mitigate the effect of catastrophic forgetting.

III. EXPERIMENTS ON REAL-WORLD DATASETS

We implemented the proposed framework in IBM Qiskit
[13] and run experiments by using simulators on two real-
world datasets, more precisely Ozone level detection 1 (having
2536 data instances, 73 features) and Spambase (having 4600
data instances, 57 features) 2. Data blocks have been parti-
tioned so as having a portion of 75% of the dataset as labelled
data instances (training sessions) and the remaining 25%
as unlabelled data instances (prediction sessions and testing
sets of the evaluation). The classical computing components
described in Section II are those available in the toolkit Scikit-
learn [14]. The number of runs of the classification model
to estimate the expectation values is 1024, while the number
of iterations (epochs) to optimize the parameters is 20. The
number of layers for the variational quantum circuit is 3. The
sample size of Data sampling is 30% the data-block size.

Preliminary experiments have been performed to emphasize
the impact of the technical configuration of the framework on
the accuracy, namely number of qubits (corresponding to the
features selected) and size of the data blocks (number of data
instances in each training/prediction session). In Table I, we
report the accuracy of the proposed framework (HYQOL)
compared to i) a classical computing solution (CC, originally
designed for data stream learning) [15] and ii) a baseline of
the framework that works on the whole dataset (FQC). The
values illustrated have been computed as the average computed
over the data blocks. As we can see, except two trials, HYQOL
does not never worst than CC, even when the number of qubit
is the higher (i.e., 8). Also, we note that the configurations
of HYQOL with smallest set of qubits (i.e., 2) are better than

1https://archive.ics.uci.edu/ml/datasets/ozone+level+detection
2https://archive.ics.uci.edu/ml/datasets/Spambase



those with largest set (i.e., 8), without, however, particular
discrepancy between the two endpoints. The size of the data
blocks seems not be determinant for the accuracies, but, it is
evident that online learning can be beneficial for quantum-
based classifiers compared to the version that works on the
whole dataset (FQC).

TABLE I
ACCURACY (IN [0,1] OF THE PROPOSED FRAMEWORK AGAINST A

CLASSICAL COMPUTING SOLUTION AND A HYBRID SOLUTION WITHOUT
ONLINE LEARNING. DATASET seismic-bumps AT THE TOP. DATASET thyroid

AT THE BOTTOM.)

data-block size #qubits
2 5 8

50 HYQOL 0,9 0,9 0,9
CC 0,9 0,9 0,9

100 HYQOL 0,93 0,89 0,86
CC 0,87 0,87 0,87

200 HYQOL 0,94 0,94 0,91
CC 0,92 0,92 0,92

400 HYQOL 0,92 0,91 0,9
CC 0,9 0,9 0,9
FQC 0,9 0,87 0,81

data-block size #qubits
2 5 8

50 HYQOL 0,88 0,84 0,84
CC 0,82 0,82 0,82

100 HYQOL 0,87 0,87 0,85
CC 0,82 0,82 0,82

200 HYQOL 0,9 0,89 0,8
CC 0,89 0,89 0,89

400 HYQOL 0,84 0,84 0,84
CC 0,86 0,9 0,84
FQC 0,83 0,83 0,8

IV. CONCLUSIONS

In this paper, we investigated the viability of quantum
machine learning solutions to work on the realistic scenar-
ios of changeability of the statistical properties of the data,
which often implies the variability of the performances of
the model. We conjecture this can be a machine learning
problem in which the quantum solutions can lead innova-
tion. On simulated hardware, the hybrid quantum-classical
proposal offers encouraging results, in terms of accuracy, often
better than a classical computing solution working on data
stream and hybrid solution working in batch mode (no online
learning). As our opinion, three take-home messages can be
identified from this paper. The first one is methodological,
in that the online learning opens to practical applications
able to combine quantum computing and classical computing
techniques, which is likely the only way to concretely use
current quantum technologies. The second one is experimental,
in that it provides arguments on the fact that stable quantum
devices could even do better in terms of performances and
quality of the results, when used in predictive tasks. The third
one tell us that, although the high-performance computation
and tractability of hard problems are the promises of quantum
computing which, with the current devices, often are not kept,
the research on the lifelong computation can be a field in which
quantum computing can already bring interesting results.
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Abstract—In this work, we propose a methodology to imple-
ment classic Markov Decision Processes in a Quantum Comput-
ing paradigm, as a first step to achieve systems running Quantum
Reinforcement Learning where both agent and environment are
expressed as quantum programs. To do so, we analyze the
interaction cycle between the agent and the environment in
classic reinforcement learning and create a method to map a
Markov Decision Process with discrete state space, action set,
and rewards, into a quantum program.

Index Terms—Reinforcement Learning, Quantum Computing,
Quantum Machine Learning, Markov Decision Process

I. INTRODUCTION

Classic Reinforcement Learning (RL) [1] is a type of
Machine Learning where an intelligent agent learns by in-
teraction with an unknown environment. A cycle of a RL
agent/environment interaction (see Figure 1) is as follows: At
each time step t the environment is in a state s(t) which is
fully observable by the agent. Then, the agent selects an action
a(t) over an available action set and performs the action over
the environment, which evolves from state s(t) to s(t+1) and
returns a reward scalar value r(t+1) to the agent as a feedback
of its performance. The goal in RL is to learn a policy π(a|s)
to select the best action a at every state s that maximizes the
long term accumulated reward, i.e.

∑
t γr(t), where γ ∈ [0, 1]

is a discount factor. Applications of RL are varied and some
are described in [1].

This work was supported by the project QUANERGY (Ref. TED2021-
129360B-I00), Ecological and Digital Transition R&D projects call 2022,
Government of Spain.

Fig. 1. Agent/environment interaction in a Reinforcement Learning cycle.

Classic RL is built upon the first-order Markov assumption,
so that the environment can be modelled with a Markov
Decision Process (MDP) [2]. An MDP is defined as a tuple〈
S,A, P,R

〉
, where S = {s1, s2, ..., s|S|} is a set of states,

A = {a1, a2, ..., a|A|} is a set of actions, P : S ×A→ P(S)
is a probabilistic transition function where P (si, ak, sj) is the
probability to evolve from state si to state sj after executing
action ak, and R : S×A×S → R is a reward function where
R(si, ak, sj) is a scalar value containing the reward obtained
after reaching state sj by means of executing action ak in state
si.

Quantum Reinforcement Learning (QRL) [3] attempts to
adapt classic Reinforcement Learning methods, or to develop
new techniques, for Quantum Computing (QC). As in Quan-
tum Machine Learning [4], four different scenarios combining
quantum and classical cases are studied, that arise from the
possibilities of a combination of classical/quantum agents
operating in classical/quantum environments. Nowadays, the
QRL literature has been mostly focused on the case where
the agent is implemented as a quantum program (usually by



means of Variational Quantum Circuits, VQC) working over a
classical environment as in [3], [5]–[8] to mention just a few,
since real quantum environments are difficult to find. However,
in the last few years, there have been a few proposals to create
quantum environments such as the quantum Tic-Tac-Toe [9].

In this work, we propose a method to migrate a classic
MDP to a QC paradigm, as a first step to create true quantum
environment simulators that enable the execution of quantum
agents in quantum environments. To do so, we first analyze
the components of the underlying MDP that rules the envi-
ronment evolution according to an agent action, and propose
a methodology to create quantum programs that emulate the
agent/environment interaction cycle.

This work is structured as follows: Section II describes
the approach. After that, Section III show an example of the
method as a proof of concept, and Section IV concludes.

II. IMPLEMENTATION OF THE MDP CYCLE IN QUANTUM
COMPUTING SCENARIOS

Our starting hypothesis is that all the state space S, action
space A, and possible rewards in R, can be expressed as
discrete sets. In this context, our goal is to find a deterministic
policy π(s) that returns the best action a = π(s) for each
environment state. The proposed general method to implement
the RL cycle in QC, containing the underlying MDP, can be
devised as follows (Figure 2):

Fig. 2. Scheme of the implementation of an MDP with a quantum program.

• At time t, the environment is at a given state s(t) =
si ∈ S, provided as an input. Therefore, a quantum
state preparation method is required to encode the cycle’s
initial state si into its corresponding quantum state |ψs⟩
in a quantum register with ns qubits. The operator to
create |ψs⟩ from |0⟩ is US , i.e. |ψs⟩ = US |0⟩.

• A deterministic action a(t) = ak ∈ A, selected by either
a classical or quantum agent, is provided as input and
applied over the environment. The action ak is encoded
into the state of a quantum register with na qubits |ψa⟩
using the unitary transformation UA so that |ψa⟩ |ψs⟩ =
UA |0⟩ |ψs⟩.

• Once the input state si and action ak are encoded
into quantum states |ψs⟩ , |ψa⟩, the transition function

P (si, ak) is executed to evolve the environment from the
known state s(t) = si to a new state s(t + 1) = sj
with probability P (si, ak, sj). To do so, a target quantum
register to store the next state, |ψs′⟩, is required. A
controlled unitary transformation UT is in charge of
calculating the superposition of target environment states
as |ψs′⟩, so that |ψs′⟩ |ψa⟩ |ψs⟩ = UT |0⟩ |ψa⟩ |ψs⟩.

• The reward r(t+1) = R(si, ak, sj) is finally calculated.
We could think of the reward function as a controlled
quantum operator UR that evolves a quantum register
|0⟩ of nr qubits allocated for rewards to a quantum
state |ψr⟩ encoding r(t + 1). Formally, it is written as
|ψr⟩ |ψs′⟩ |ψa⟩ |ψs⟩ = UR |0⟩ |ψs′⟩ |ψa⟩ |ψs⟩.

• Return of s(t+ 1), r(t+ 1) to the agent. In the case the
agent is classical, this can be performed with measure-
ment operators over the target state quantum register |ψs′⟩
and reward register |ψr⟩.

A. Current state and action encoding

To achieve an optimal use of qubit resources using a
dense encoding technique, all environment states, actions and
rewards are stored in the amplitudes of their corresponding
quantum registers. This means that the size of ns qubits used
for representing the environment states, na qubits to represent
the available actions, and nr qubits to represent rewards can
hold 2ns , 2na and 2nr different possible values, respectively.

Since environment states are fully observable in a MDP,
the quantum state representing |ψs⟩ contains an amplitude
whose squared value equals 1.0, and therefore a simple basis
encoding technique [4] containing X gates can be used as
the encoding operator US . The same situation occurs for
actions and UA. Assuming a mapping from environment states,
si ∈ S to basis quantum states, i.e. si 7→ |i⟩, and also for
actions ak 7→ |k⟩, the unitary operators US and UA can
be generalized and implemented using parameterized circuits
containing Rx(θ) gates, where θ ∈ {0, π} depending on the
binary representation of si, ak.

B. Implementation details of transition probabilities

The unitary transformation UT is in charge of calculating
the superposition of target states sj ∈ S into |ψs′⟩, so that
the register of the next state |ψs′⟩ contains the probabilities of
measurement P (si, ak, sj). Thus, UT can be implemented as
a sequence of instances of the Q-Sample encoding method [4]
controlled by the values of the quantum registers |ψa⟩ |ψs⟩.
Section III provides an example of such instances.

C. Implementation details of reward computation

Similarly to states and actions, we assume a mapping from
the set of rewards rl ∈ R to basis states as rl 7→ |l⟩ in the
reward quantum register. After all values si, ak, sj are known,
the reward function R(si, ak, sj) is implemented into UR as
a controlled operation that sets a probability amplitude of a
basis vector in the reward quantum register to value 1.0. This is
implemented in a circuit as a sequence of multiple controlled
NOT gates that set the correct amplitude. The idea behind



this operation is to entangle the reward quantum state with
|ψs′⟩ |ψa⟩ |ψs⟩ so that the correct reward value is obtained
once |ψs′⟩ collapses after measurement.

III. PROOF OF CONCEPT AND IMPLEMENTATION

Due to space limitations, we limit the experimentation in
this work to show the RL cycle mapping from the MDP in
Figure 3 to a quantum program. We also performed a toy
example experiment to train a classic agent using the Q-
Learning procedure with γ = 0.99 in a maximum number of
T = 200 steps and learning rate α = 0.2 to test convergence.
The source code for this experimentation is freely available at
https://github.com/manupc/MDPQuantum.

Fig. 3. Example MDP.

The MDP in Figure 3 contains four states S =
{s1, s2, s3, s4}, two possible actions for each state A =
{a1, a2}, and a discrete set with four rewards that depend
on the final transition state only {r(s1) = 10, r(s2) =
−5, r(s3) = 1, r(s4) = −10}. Therefore, the number of
qubits required to represent the states and rewards is ns =
nr = 2. The proposed mapping from states and rewards to
basis vectors is s1 7→ |00⟩ , s2 7→ |01⟩ , s3 7→ |10⟩ , s4 7→
|11⟩ and r(·, ·, s1) 7→ |00⟩ , r(·, ·, s2) 7→ |01⟩ , r(·, ·, s3) 7→
|10⟩ , r(·, ·, s4) 7→ |11⟩, respectively. It is assumed that the
initial state to execute the environment is s1. With respect
to actions, a number of na = 1 qubit is required under the
mapping a1 7→ |0⟩ , a2 7→ |1⟩.

The optimal deterministic policy was obtained using the
Value Iteration method in classic RL, obtaining the policy
π(s1) = a1, π(s2) = a2, π(s3) = a2, π(s4) = a1. Running
the value iteration over the classical environment required 0.02
sec. on a desktop computer Intel(R) Core(TM) i5-9600K CPU
at 3.70GHz with 32GB RAM. On the other hand, the Q-
Learning algorithm over the classical environment took 0.012
sec. and obtained the optimal policy.

The quantum MDP was implemented in IBM’s Qiskit with
the QASM noise-free simulator. An example of a sub-circuit
containing the transition from s3 and action a2 to states s0, s3
with probabilities 0.4 and 0.6, respectively, is depicted in
Figure 4. The Q-Learning method was applied to learn the
optimal policy, using a computational time of 226.68 sec.
under ideal conditions.

Fig. 4. Example circuit to represent a single transition P (s2, a2).

IV. CONCLUSIONS

In this work, we have shown a preliminary study towards the
creation of quantum environments for reinforcement learning,
inspired in the hypotheses of classic RL using MDPs as
a first step. We have developed a method to implement a
reinforcement learning agent/environment interaction cycle in
a quantum computer containing the full transition and reward
functions of the MDP. Future works will consider extending
the implementation to models with partial observability, and
general methods to implement quantum agents working in
quantum environments.
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Abstract—The growing interest in quantum computation is
driven by its potential to surpass classical computation speed.
This interest has led to an increasing focus on developing new
quantum algorithms for data analysis tasks, including outlier
detection, which is crucial in identifying dataset abnormalities.
Some quantum outlier detection techniques have been proposed
in the past, demonstrating the potential of quantum algorithms
to enhance outlier detection. This study introduces a novel
Quantum Outlier Detection Algorithm (QODA) that leverages
variance estimation. We evaluate the performance of QODA on
multiple datasets, and our results demonstrate that it enhances
the efficiency of classical outlier detection while maintaining high
accuracy.

Index Terms—Quantum Computing, Quantum Artificial Intel-
ligence, Quantum Outlier Detection

I. INTRODUCTION

Detecting outliers is crucial in many fields, including fi-
nance, healthcare, and engineering. Outliers can significantly
impact data analysis results, leading to incorrect conclusions
or decisions. Hence, developing effective outlier detection
algorithms is critical. Recently, quantum computing has shown
great potential to solve computationally expensive problems
for classical computers, including data analysis tasks. In the
literature, various techniques for detecting outliers in quantum
computing have been suggested [1], [3]. However, our paper
introduces a novel approach, a hybrid quantum algorithm in-
spired by the classical Angle-Based Outlier Detection (ABOD)
algorithm [2], an unsupervised distance-based method for
detecting outliers. Our proposed hybrid quantum version of
ABOD leverages the power of quantum computing to enhance
the algorithm’s performance.

We begin by providing an overview of the ABOD algorithm
and of the notation used in the paper. Next, we propose a
hybrid algorithm inspired by ABOD, which leverages a quan-
tum subroutine to enhance the efficiency of outlier detection.
Finally, we evaluate the performance of our algorithm on some
synthetic and benchmark datasets and compare it with the
classical technique. The experiments indicate that our hybrid
quantum algorithm yields results comparable to those of the
classical ABOD algorithm. Overall, our algorithm offers a
promising approach for outlier detection tasks, demonstrating
the potential of quantum computing to enhance data analysis
in various fields.

II. OUTLIER DETECTION

A. Classical Approach

ABOD (Angle-Based Outlier Detection) is a distance-based
unsupervised outlier detection method that measures the ab-
normality of each data point by computing the variance of the
angles between the difference vectors of the given point to
the other points in the dataset. Indeed, the variance of these
angles depends on how different a point is from the others:
for points within a cluster, the angles differ widely, while
outliers are expected to present a smaller variance because
they are further away from the rest of the dataset. Hence,
the points with smaller ABOD values are considered to be
more likely to be outliers. ABOD has several advantages over
other outlier detection techniques, including detecting outliers
in high-dimensional datasets. However, it may not perform
well on datasets with a high degree of overlap between classes
or when the dataset contains clusters of outliers. Moreover, it
has a cost of O(M3N) where M is the number of records,
and N is the dimension of each record; hence the cost is very
high.

The classical algorithm works as follows. Assume we have
M records, each with N -dimensions, stored in a matrix X =
[x1|x2| · · · |xM ] ∈ RN×M , so that each record can be seen
as belonging to a vector space of dimension N . We iterate
over all records, considering each one as a pivot. Thus, let xp,
1 ≤ p ≤ M , the current pivot. We denote by θ

(p)
ij the angle

between the vectors xi and xj observed from the pivot xp,
i.e., the angle between the difference vectors x̃i = xi − xp
and x̃j = xj − xp. Mathematically this can be written as:

θ
(p)
ij = arccos

(
x̃T
i x̃j

∥x̃i∥∥x̃j∥

)
,

where all norms are 2-norms. For each p ∈ {1, . . . ,M}, we
compute the variance vp of θ(p)ij , with 1 ≤ i < j ≤ M

and i, j ̸= p, i.e., vp = Var
(
θ
(p)
ij

)
= E[(θ(p)ij )2] − E2[θ

(p)
ij ],

where we denoted by E[·] the expected value. Once the vector
V = [v1, v2, . . . , vM ] is ready, the algorithm detects the out-
liers as the records with variance below a given threshold. The
algorithm is usually implemented by computing the variance
directly on the inner products, i.e., on the cosine of θ(p)ij [2].

B. Quantum Outlier Detection

In this section, we design a hybrid quantum version of
ABOD called Quantum Outlier Detection Algorithm (QODA).
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Fig. 2. Quantum Outlier Factor Oracle

QODA iterates over all records in a given dataset and calls a
quantum subroutine to test whether the current record is an
outlier on a single quantum circuit. Alternatively, we could
test each record in the dataset by employing distinct quantum
circuits that can run in parallel. QODA mimics the classical
ADOB approach, exploiting the variance as a statistical mea-
sure to detect outliers, to reduce the computational complexity
of the classical version thanks to quantum phenomena. A
crucial subroutine of QODA is, therefore, an efficient quantum
heuristic for estimating the variance of all angles θ(p)ij , for a
given sample xp, taken as a pivot. We call this subroutine
Quantum Outlier Factor (QOF). This heuristic is based on
the idea of approximating the angles θ(p)ij with the differences
∆

(p)
ij between the vectors translated by the pivot xp and

normalized. The variance is then computed directly over the
approximations ∆

(p)
ij within the same quantum circuit. More

precisely, let xp be the pivot. For all 1 ≤ i ≤ M , we
(classically) compute x̃i = xi − xp. Then, we normalize
all vectors adopting as default data preprocessing the Inverse
Stereographic Projection (ISP), in order to keep the clusters
separated, as discussed in [5]. Recall that the ISP maps N -
dimensional data into the surface of a unit sphere in the
(N+1)-dimensional space and is computed as follows. Given
a vector v = (v1, v2, . . . , vN ) ∈ Rn, then:

ISP(v) = (
2v1

∥v∥2 + 1
,

2v2
∥v∥2 + 1

, . . . ,
2vN

∥v∥2 + 1
,
∥v∥2 − 1

∥v∥2 + 1
) ,

where all norms are 2-norms. Notice that ∥ISP(v)∥ = 1. Thus,
let x̂i = ISP(x̃i) = ISP(xi − xp) denote the normalized
vectors, translated by xp. We encode all these vectors in a
quantum circuit and then use a Hadamard gate to compute the
differences ∆

(p)
ij = 1

2(M−1)
√
N+1

(x̂i − x̂j) in the amplitudes,
appropriately normalized, as shown in Figure 1. Note that the
dependence from the chosen pivot xp is kept within x̂i and
x̂j , indeed we have

(x̂i−x̂j)k =





2(xki−xkp)

∥xi−xp∥2+1
− 2(xkj−xkp)

∥xj−xp∥2+1
for k = 1, . . . , N

2(∥xi−xp∥2−∥xj−xp∥2)
(∥xi−xp∥2+1)(∥xj−xp∥2+1)

, for k = N + 1.
.

These differences are then used, instead of the angles θ(p)ij ,
for the variance computation in the same circuit, as shown in
Figure 2. Indeed, the variance of the differences provides an
approximated lower bound for the variance of the angles, as
stated in the following theorem.

Theorem 1. Let ∆(p) be the (M − 1)2(N + 1)-dimensional
vector obtained appending all the ∆

(p)
ij , for 1 ≤ i, j ≤

M, (i, j ̸= p), and θ(p) be the (M − 1)2-dimensional vector
whose components are the angles θ̂(p)ij between x̂i and x̂j , for
1 ≤ i, j ≤M, (i, j ̸= p). Then:

Var(∆(p)) <̇
1

N + 1
Var(θ̂(p))− 1

N
E2[θ̂(p)] . (1)

Proof. (Sketch) Follows applying the second order Taylor
expansion of the cosine function to approximate the scalar
product between the vectors x̂i and x̂j .
Using vector differences instead of angles is convenient as
we can maintain the superposition of all differences in the
QOF oracle and perform the variance computation directly
on them within the same circuit (see Figure 2). Thus, this
approach requires only one data encoding step and one fi-
nal measurement. An alternative oracle could be derived by
computing the inner products between all pairs of vectors
with a technique inspired by [4], that does not require an
intermediate measurement as the standard method based on
fidelity computation. This alternative approach is currently
under experimental evaluation.

The quantum subroutine for computing the QOF employs
the Amplitude Estimation (AE) algorithm, using as oracle the
one of Figure 2. In this way, we can estimate the amplitude
of the target configuration containing the variance of the
differences by measuring the m additional qubits of AE.
The measurement output represents an approximation of the
variance in the computational basis.

The complexity of the quantum oracle QOF is
O(logM2N), i.e., O(logMN), assuming available efficient
methods for encoding classical data. The overall hybrid

Algorithm 1 QODA
Input: X - input data, t - threshold
Output: O - list of outliers

O ← [] // list of outliers initially empty

for p ∈ {1, 2, . . . ,M} do // for each record
X̃ ← X − |xp⟩ ⟨1| ; // scale the dataset w.r.t. xp

X̂ ← ISP(X̃) ; // normalize Xp with ISP
vp ← QOF(X̂) // Quantum Outlier Factor of xp.

if vp ≤ t then // check if xp is an outlier
O.append(xp) ; // append xp to the list of outliers

return O ; // return the list of outliers

algorithm QODA to solve the outlier detection problem
is summarized by the pseudocode in Algorithm 1. The
complexity of QODA is O(M(MN+logMN)) = O(M2N),



where the term MN is due to the data preprocessing. Due to
the space limitation, all details, together with a formal proof
of the correctness of the quantum oracle QOF, will be given
in the extended version of the paper.

III. EXPERIMENTS

The following section presents the numerical experiments
conducted to evaluate the effectiveness of the Quantum Out-
lier Detection Algorithm (QODA) on a series of benchmark
datasets. The initial assessment involves testing the effective-
ness of the heuristic used by QODA. The second experimental
evaluation aims at assessing the accuracy of QODA using the
QASM SIMULATOR of Qiskit.

A. Heuristic Evaluation

The following datasets are used as benchmarks to evaluate
the heuristic:

• synth3: M=500 synthetic data with dimension N=20 whose 2%
are outliers.

• synth4: M=500 synthetic data with dimension N=30 whose 2%
are outliers.

• synth1: M=500 synthetic data with dimension N=20 whose 10%
are outliers.

• synth2: M=500 synthetic data with dimension N=30 whose 10%
are outliers.

• lympho: real dataset with M=148, N=18.
• glass: real dataset with M=214, N=9.
• wbc: real dataset with M=278, N=30.

Our experiments can be divided into two types. The first
type is conducted to verify the accuracy of the lower bound
given by Theorem 1. In Table I, we present the approximation
errors, measured in terms of Mean Squared Error (MSE),
Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE), introduced by the relation (1). Our findings indicate
that the lower bound (1) holds for all datasets considered.

TABLE I
APPROXIMATION ERRORS OF RELATION (1)

dataset MSE MAE RMSE
synth1 2.53e-8 1.30e-4 1.60e-4
synth2 1.57e-9 3.37e-5 3.96e-5
synth3 3.02e-8 1.45e-4 1.73e-4
synth4 1.92e-9 3.85e-5 4.38e-5
lympho 3.83e-7 5.27e-4 6.19e-4
glass 7.51-3 5.98e-2 8.66e-2
wbc 3.09e-5 5.21e-3 5.55e-3

The second type of experiment aims to evaluate the effec-
tiveness of outlier detection leveraging the variance of the
differences ∆

(p)
ij instead of the variance of the angles θ(p)ij .

We compare the outlier rankings generated by two methods
to achieve this objective. Table II presents the precision-at-
n (P@n) metric, which we used to conduct this comparison.
Specifically, we calculated P@n by determining the number
of records in the top n ranks identified as outliers using the
differences and angles, respectively. We can see that accuracy
is very high, especially for synthetic datasets. Furthermore,
we utilized the Rank Biased Overlap (RBO) [6] measure to
evaluate the overall outlier ranking of our heuristic, taking as
ground truth the classical algorithm working with the angles.

This metric considers the ranking similarity on the top ranks,
with the weighting determined by a parameter p. A higher
value of p assigns greater importance to the top ranks in the
final similarity calculation. The table indicates that the outlier
rankings obtained by the method leveraging the variance of
differences are similar to the ground truth, particularly for the
highest-ranked outliers.

TABLE II
Precision-at-n (P@n) of the algorithm taking as ground truth the classical

algorithm working with the angles.

dataset n=5 n=10 n=15 n=20 n=25 n=30
synth1 0.80 0.90 0.93 0.90 0.96 0.97
synth2 1.0 1.0 1.0 0.95 0.96 0.93
synth3 1.0 1.0 1.0 0.90 0.84 0.93
synth4 1.0 1.0 0.93 0.95 0.84 0.90
lympho 0.80 0.60 0.67 0.70 0.76 0.77
glass 0.70 0.80 0.80 0.90 0.84 0.87
wbc 0.60 0.70 0.80 0.70 0.60 0.57

TABLE III
RBO MEASURE VARYING THE PARAMETER p

dataset p=0.70 p=0.75 p=0.80 p=0.85 p=0.90 p=0.95
synth1 0.65 0.69 0.74 0.78 0.83 0.88
synth2 0.67 0.71 0.76 0.81 0.86 0.91
synth3 0.88 0.89 0.89 0.90 0.90 0.91
synth4 0.65 0.69 0.74 0.79 0.84 0.88
lympho 0.52 0.54 0.57 0.59 0.62 0.66
glass 0.51 0.55 0.59 0.63 0.68 0.74
wbc 0.60 0.63 0.66 0.68 0.68 0.67

B. Quantum Simulation
Currently, the availability of quantum hardware is limited,

which means that quantum computation can only be simulated
using classical hardware. Nevertheless, simulating quantum
computation on classical hardware is expensive, so we can
only execute basic versions of our algorithm. For this reason,
we run QODA on two simple synthetic datasets with a single
outlier each. The first has M = 5 records with dimension
N = 1, and the second has M = 5 records with dimension
N = 3. By running the experiments with different random
seed values for generating datasets five times, we found that
QODA successfully identifies the sole outlier in both datasets
with a 100% accuracy rate.
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Technology Innovation Institute (Abu Dhabi)
Rome, Italy

simone.bordoni@uniroma1.it

2nd Andrea Cacioppo
Sapienza Università di Roma
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Abstract—We investigate the possibility to apply parametrized
quantum circuits, in particular quantum autoencoders, for differ-
ent machine learning tasks. The first application is for anomaly
detection in handwritten digits as well as more complex structures
like anomalous patterns in the particle detectors. This algorithm
has been trained on a classical computer and tested with simula-
tions and on real quantum hardware. Tests on NISQ devices have
been performed with IBM quantum computers. For the execution
on quantum hardware specific hardware driven adaptations have
been devised and implemented. We also present a preliminary
study about the possibility of applying parametrized quantum
circuits for generative tasks. In this study, the quantum circuit
has been used in the denoising steps of a quantum diffusion
model.

Index Terms—Quantum machine learning, Quantum autoen-
coder, Parametrized quantum circuit, Anomaly detection, Diffu-
sion model

I. INTRODUCTION

In this work we propose two different applications of the
quantum autoencoder (QAE) circuit ansatz for QML [3]. The
first application is quantum anomaly detection. We test this
algorithm on an easier task involving a standard benchmark
dataset in machine learning, the handwritten digits MNIST
dataset. We then apply the technique to a more complex and
interesting use-case, the identification of anomalous signatures
inside a particle detector due to the decay of long-lived
particles. Some of the quantum circuits developed in this
work are simple enough to be tested on Noisy Intermediate
Scale Quantum (NISQ) computers [2]. The tests on real
quantum hardware have been implemented on IBM quan-
tum computers.The second application of the QAE is for
a diffusion model. Classical diffusion models are showing
great performances in generative tasks, and usually are more
stable than the previous generation of generative algorithms.
In a quantum diffusion model a QAE is applied to perform
consecutive denoising steps. An algorithm of this kind would
be able, in principle, to transform an initial random quantum
state into a quantum state with defined characteristics. The
possibility of generating quantum states similar to a defined

set of samples may be an important resource in quantum
computing [11].

II. BACKGROUND ON QUANTUM AUTOENCODERS

Autoencoders are a class of machine learning algorithms
that aim at compressing and reconstructing data. These al-
gorithms con be implemented using two artificial neural net-
works: the encoder and the decoder. The encoder compresses
initial data down to a small dimension (latent dimension). The
decoder inverts the process to reconstruct the original data
from the compressed representation. The parameters of the
neural network are trained in order to minimize the difference
between the initial and reconstructed data. A quantum autoen-
coder keeps the same structure of the classical counterpart
but replaces the artificial neural networks with parametrized
quantum circuits (PQC) [5]. A PQC is a quantum circuit
that depends on free (trainable) parameters. Information is
stored in the state of the qubits, in this work we use the
state amplitudes (amplitude encoding) [10]. The initial state is
transformed using rotation gates and entangling gates. These
gates can be organized in layers; in our circuit architecture
one layer is composed of rotation gates (Rx, Ry , Rz) acting
on all qubits followed by a series of C-NOT gates coupling
neighboring qubits. The trainable parameters are the angles
of rotation gates and can be trained using the conventional
stochastic gradient descent techniques via backpropagation
adopted in the training of artificial neural networks. A quantum
circuit implements a unitary, thus invertible, transformation
on the initial state. This represents a great advantage for the

Fig. 1. Schematic representation of a quantum autoencoder.



autoencoder architecture, as the decoder can be taken as simply
the inverse of the encoder quantum circuit (Fig. 1). In order to
compress information, the encoder circuit has to disentangle
and set to the ground state a given number of qubits [3]. The
loss function is thus taken as the expected measurement values
of these qubits. In this way, for the training of the circuit, it
is necessary only the encoder. For the simulation and training
of the PQC we have used the QIBO [6] library that can be
easily integrated with Tensorflow

III. QUANTUM ANOMALY DETECTION

Anomaly detection describes a class of algorithms that aims
at the identification of rare events, which deviate significantly
from the majority of the data. For the anomaly detection task,
an autoencoder is trained only on data samples belonging to
the normal event class. When the trained model is applied
to new samples we expect the loss function to have different
values for normal and anomalous data. With quantum anomaly
detection we mean the anomaly detection task performed with
a QAE.

A. Simulation on classic hardware

In order to find the best parameters of the proposed quantum
anomaly detection algorithm the first tests have been carried
out with simulations on classical hardware. Two different use
cases have been considered, a simple application to handwrit-
ten digits and an application to high-energy physics.
Quantum anomaly detection on handwritten digits has been
carried out on the MNIST dataset with ”zero” digits as normal
data, and ”one” digits as anomalous data. The original MNIST
images have been compressed down to 8×8 pixels, in this way
one image can be encoded in the state amplitudes of 6 qubits.
An high-energy physics application of an anomaly detection
algorithm is the identification of anomalous patterns in the
triggers system of a collider experiment [1]. In this study two
datasets are generated, one corresponding to short decay length
(standard) and one corresponding to very displaced decays
(anomalous). Data are conveniently represented in the form of
images of dimension 100×20 pixels, the initial state is stored
in 11 qubits. The best quantum circuit ansatz has been found
to be with six layers for the handwritten digits case and eight
layers for the high-energy physics application. Fig. 2 shows
the loss distribution for the two test datasets in the handwritten
digit application and the high-energy physics application.

Fig. 2. Quantum autoencoder loss function values distribution for handwritten
digits application (left) and for the high-energy physics application (right).

B. Quantum hardware implementation

The execution of quantum circuits on NISQ devices is
difficult even on state-of-the-art quantum devices. The main
problems come from the amplitude encoding and from the con-
nectivity in the architecture of quantum computers. In order to
make the algorithm work with these limitations, some changes
and a careful adaptations have to be implemented on the PQC.
Given the consequent reduction in the expressive power of the
model, we decided to focus only on the simplest use-case of
the handwritten digits for the quantum hardware test. To solve
the connectivity problem we removed some C-NOT gate in
order to map directly the circuit on the chip without adding
any SWAP gate. The quantum chip employed in this work is
IBM hanoi. Moreover we decided to use only four layers for
the encoder circuit. Amplitude encoding is a state preparation
procedure that requires a number of C-NOT gates that grows
exponentially in the number of qubits [8]. To overcome the
problem we developed another PQC designed to provide a
good approximation of the exact amplitude encoding while
using a reduced number of gates. The final tests on quantum
hardware have been carried out using circuits composed of
two parts, the approximated amplitude encoding circuit and
the encoder. Each circuit has been executed with 2048 shots.
The distributions for normal and anomalous data for this loss
function are reported in Fig. 3 for simulated circuits with
no noise and real quantum circuit. It is possible to observe
a significant separation between normal and anomalous data,
although with a clear degradation in the case of the execution
on real quantum hardware due to the high level of noise.

IV. QUANTUM DIFFUSION MODEL

Diffusion models are state of the art generative algorithms,
they are used to generate samples with the same characteristics
of a defined dataset. A diffusion model is trained by combining
two opposite processes. In the diffusion process, noise is
progressively added to the initial data. In the reverse diffusion
process a neural network is trained to progressively denoise
the noisy data. After training, the reverse process can be
used to generate new data by starting from pure noise [4].
In the proposed quantum diffusion model the neural network
has been replaced with a parametrized quantum circuit. It is
important to notice that, in order to avoid mixed quantum
states, only coherent noise can be added during the diffusion
process.

Fig. 3. Quantum autoencoder loss function values distribution. Simulated
circuits with no noise (left) and a noisy quantum circuits (right).



A. Denoising circuit

In the classical diffusion model the denoising steps are
usually performed using an autoencoder with a U-Net architec-
ture [9]. This kind of neural networks have a high expressive
power, that is not possible to reach with small size quantum
circuits. However, a QAE can still be used to perform simple
denoising steps. The simple generative task that we have tested
is the generation of handwritten digits of the MNIST dataset.
In order to make the quantum diffusion model work it is
necessary to tune a high number of hyperparameters of the
QAE and of the diffusion process. For the diffusion process
the most important hyperparameters have been found to be
the number of steps in the diffusion process and the schedule
of the noise added at each step. In a classical diffusion
model the number of diffusion steps is of the order of 103,
as we are testing the algorithm on a simple case we have
significantly reduced the number of steps, varying them from
5 to 50. A higher number of steps helps the generation of
images with a better resolution but increase the chance of
collapsing the model into generating a single state. For the
noise addition schedule we found the better performance using
uncorrelated Gaussian noise with the variance proposed in [7].
The main hyperparameters of the quantum autoencoder regard
the number of layers and the number of compressed qubits.
We have tested a number of layers varying from 5 to 200. By
increasing the number of layers it is possible to obtain a better
expressive power that result in more definition on the final
states. However, increasing the number of layers makes the
training process more difficult because of barren plateaus and
makes the execution on NISQ devices impossible. The number
of compressed qubits in the quantum autoencoder has been
found to be the most important hyperparameter of the model.
By increasing the number of compressed qubits it is possible
to introduce more non-linearities in the circuit, resulting in a
better denoising power. However, by compressing more than
one or two qubits the model collapses into generating the same
state. Fig. 4 shows the generation process of a quantum state
encoding a ”zero” handwritten digit. Ten denoising steps have
been performed with a quantum autoencoder with six layers
and one compressed qubits; only the last five steps are reported
in the figure.

B. Model collapse

The main limitation of the presented quantum diffusion
model is the model collapse, this means that it is not able
to generate a large variety of samples and tends to generate
samples very close to the average over all the training set. In

Fig. 4. Five consecutive steps of the generation process of a quantum state
encoding a ”zero” handwritten digit.

Fig. 5. Three samples generated with the quantum diffusion model by adding
noise during the generation process to mitigate model collapse. In the first
figure on the left the model has produced an average (collapsed) state, while
in the two other cases correct samples have been generated of ”one” and
”zero” handwritten digits.

order observe better this phenomena, we have increased the
images dimension to 16×16 pixels and used both ”zero” and
”one” digits. To mitigate the model collapse we have added
noise in the reverse diffusion process, this strategy is also used
in classical diffusion models. The noise can be added directly
after each denoising step with a small random quantum circuit
that implements a transformation close to identity. Otherwise,
we have also tried adding some small rotations on the qubits
in the latent space. With both these noise injection strategies
it is necessary to find a good balance between the variety of
the generated samples, that can be be increased by adding
more noise, and the definition of the generated states, that is
reduced by adding more noise. Fig. 5 shows three states where
noise has been injected after each denoising step during the
generation process. The first image on the left shows a case
where the model has collapsed into an averaged state.
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Abstract—The growing interest in quantum computation is
driven by its potential to surpass classical computation speed.
This interest has led to an increasing focus on developing new
quantum algorithms for data analysis tasks, including outlier
detection, which is crucial in identifying dataset abnormalities.
Some quantum outlier detection techniques have been proposed
in the past, demonstrating the potential of quantum algorithms
to enhance outlier detection. This study introduces a novel
Quantum Outlier Detection Algorithm (QODA) that leverages
variance estimation. We evaluate the performance of QODA on
multiple datasets, and our results demonstrate that it enhances
the efficiency of classical outlier detection while maintaining high
accuracy.

Index Terms—Quantum Computing, Quantum Artificial Intel-
ligence, Quantum Outlier Detection

I. INTRODUCTION

Detecting outliers is crucial in many fields, including fi-
nance, healthcare, and engineering. Outliers can significantly
impact data analysis results, leading to incorrect conclusions
or decisions. Hence, developing effective outlier detection
algorithms is critical. Recently, quantum computing has shown
great potential to solve computationally expensive problems
for classical computers, including data analysis tasks. In the
literature, various techniques for detecting outliers in quantum
computing have been suggested [1], [3]. However, our paper
introduces a novel approach, a hybrid quantum algorithm in-
spired by the classical Angle-Based Outlier Detection (ABOD)
algorithm [2], an unsupervised distance-based method for
detecting outliers. Our proposed hybrid quantum version of
ABOD leverages the power of quantum computing to enhance
the algorithm’s performance.

We begin by providing an overview of the ABOD algorithm
and of the notation used in the paper. Next, we propose a
hybrid algorithm inspired by ABOD, which leverages a quan-
tum subroutine to enhance the efficiency of outlier detection.
Finally, we evaluate the performance of our algorithm on some
synthetic and benchmark datasets and compare it with the
classical technique. The experiments indicate that our hybrid
quantum algorithm yields results comparable to those of the
classical ABOD algorithm. Overall, our algorithm offers a
promising approach for outlier detection tasks, demonstrating
the potential of quantum computing to enhance data analysis
in various fields.

II. OUTLIER DETECTION

A. Classical Approach

ABOD (Angle-Based Outlier Detection) is a distance-based
unsupervised outlier detection method that measures the ab-
normality of each data point by computing the variance of the
angles between the difference vectors of the given point to
the other points in the dataset. Indeed, the variance of these
angles depends on how different a point is from the others:
for points within a cluster, the angles differ widely, while
outliers are expected to present a smaller variance because
they are further away from the rest of the dataset. Hence,
the points with smaller ABOD values are considered to be
more likely to be outliers. ABOD has several advantages over
other outlier detection techniques, including detecting outliers
in high-dimensional datasets. However, it may not perform
well on datasets with a high degree of overlap between classes
or when the dataset contains clusters of outliers. Moreover, it
has a cost of O(M3N) where M is the number of records,
and N is the dimension of each record; hence the cost is very
high.

The classical algorithm works as follows. Assume we have
M records, each with N -dimensions, stored in a matrix X =
[x1|x2| · · · |xM ] ∈ RN×M , so that each record can be seen
as belonging to a vector space of dimension N . We iterate
over all records, considering each one as a pivot. Thus, let xp,
1 ≤ p ≤ M , the current pivot. We denote by θ

(p)
ij the angle

between the vectors xi and xj observed from the pivot xp,
i.e., the angle between the difference vectors x̃i = xi − xp
and x̃j = xj − xp. Mathematically this can be written as:

θ
(p)
ij = arccos

(
x̃T
i x̃j

∥x̃i∥∥x̃j∥

)
,

where all norms are 2-norms. For each p ∈ {1, . . . ,M}, we
compute the variance vp of θ(p)ij , with 1 ≤ i < j ≤ M

and i, j ̸= p, i.e., vp = Var
(
θ
(p)
ij

)
= E[(θ(p)ij )2] − E2[θ

(p)
ij ],

where we denoted by E[·] the expected value. Once the vector
V = [v1, v2, . . . , vM ] is ready, the algorithm detects the out-
liers as the records with variance below a given threshold. The
algorithm is usually implemented by computing the variance
directly on the inner products, i.e., on the cosine of θ(p)ij [2].

B. Quantum Outlier Detection

In this section, we design a hybrid quantum version of
ABOD called Quantum Outlier Detection Algorithm (QODA).
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Fig. 2. Quantum Outlier Factor Oracle

QODA iterates over all records in a given dataset and calls a
quantum subroutine to test whether the current record is an
outlier on a single quantum circuit. Alternatively, we could
test each record in the dataset by employing distinct quantum
circuits that can run in parallel. QODA mimics the classical
ADOB approach, exploiting the variance as a statistical mea-
sure to detect outliers, to reduce the computational complexity
of the classical version thanks to quantum phenomena. A
crucial subroutine of QODA is, therefore, an efficient quantum
heuristic for estimating the variance of all angles θ(p)ij , for a
given sample xp, taken as a pivot. We call this subroutine
Quantum Outlier Factor (QOF). This heuristic is based on
the idea of approximating the angles θ(p)ij with the differences
∆

(p)
ij between the vectors translated by the pivot xp and

normalized. The variance is then computed directly over the
approximations ∆

(p)
ij within the same quantum circuit. More

precisely, let xp be the pivot. For all 1 ≤ i ≤ M , we
(classically) compute x̃i = xi − xp. Then, we normalize
all vectors adopting as default data preprocessing the Inverse
Stereographic Projection (ISP), in order to keep the clusters
separated, as discussed in [5]. Recall that the ISP maps N -
dimensional data into the surface of a unit sphere in the
(N+1)-dimensional space and is computed as follows. Given
a vector v = (v1, v2, . . . , vN ) ∈ Rn, then:

ISP(v) = (
2v1

∥v∥2 + 1
,

2v2
∥v∥2 + 1

, . . . ,
2vN

∥v∥2 + 1
,
∥v∥2 − 1

∥v∥2 + 1
) ,

where all norms are 2-norms. Notice that ∥ISP(v)∥ = 1. Thus,
let x̂i = ISP(x̃i) = ISP(xi − xp) denote the normalized
vectors, translated by xp. We encode all these vectors in a
quantum circuit and then use a Hadamard gate to compute the
differences ∆

(p)
ij = 1

2(M−1)
√
N+1

(x̂i − x̂j) in the amplitudes,
appropriately normalized, as shown in Figure 1. Note that the
dependence from the chosen pivot xp is kept within x̂i and
x̂j , indeed we have

(x̂i−x̂j)k =





2(xki−xkp)

∥xi−xp∥2+1
− 2(xkj−xkp)

∥xj−xp∥2+1
for k = 1, . . . , N

2(∥xi−xp∥2−∥xj−xp∥2)
(∥xi−xp∥2+1)(∥xj−xp∥2+1)

, for k = N + 1.
.

These differences are then used, instead of the angles θ(p)ij ,
for the variance computation in the same circuit, as shown in
Figure 2. Indeed, the variance of the differences provides an
approximated lower bound for the variance of the angles, as
stated in the following theorem.

Theorem 1. Let ∆(p) be the (M − 1)2(N + 1)-dimensional
vector obtained appending all the ∆

(p)
ij , for 1 ≤ i, j ≤

M, (i, j ̸= p), and θ(p) be the (M − 1)2-dimensional vector
whose components are the angles θ̂(p)ij between x̂i and x̂j , for
1 ≤ i, j ≤M, (i, j ̸= p). Then:

Var(∆(p)) <̇
1

N + 1
Var(θ̂(p))− 1

N
E2[θ̂(p)] . (1)

Proof. (Sketch) Follows applying the second order Taylor
expansion of the cosine function to approximate the scalar
product between the vectors x̂i and x̂j .
Using vector differences instead of angles is convenient as
we can maintain the superposition of all differences in the
QOF oracle and perform the variance computation directly
on them within the same circuit (see Figure 2). Thus, this
approach requires only one data encoding step and one fi-
nal measurement. An alternative oracle could be derived by
computing the inner products between all pairs of vectors
with a technique inspired by [4], that does not require an
intermediate measurement as the standard method based on
fidelity computation. This alternative approach is currently
under experimental evaluation.

The quantum subroutine for computing the QOF employs
the Amplitude Estimation (AE) algorithm, using as oracle the
one of Figure 2. In this way, we can estimate the amplitude
of the target configuration containing the variance of the
differences by measuring the m additional qubits of AE.
The measurement output represents an approximation of the
variance in the computational basis.

The complexity of the quantum oracle QOF is
O(logM2N), i.e., O(logMN), assuming available efficient
methods for encoding classical data. The overall hybrid

Algorithm 1 QODA
Input: X - input data, t - threshold
Output: O - list of outliers

O ← [] // list of outliers initially empty

for p ∈ {1, 2, . . . ,M} do // for each record
X̃ ← X − |xp⟩ ⟨1| ; // scale the dataset w.r.t. xp

X̂ ← ISP(X̃) ; // normalize Xp with ISP
vp ← QOF(X̂) // Quantum Outlier Factor of xp.

if vp ≤ t then // check if xp is an outlier
O.append(xp) ; // append xp to the list of outliers

return O ; // return the list of outliers

algorithm QODA to solve the outlier detection problem
is summarized by the pseudocode in Algorithm 1. The
complexity of QODA is O(M(MN+logMN)) = O(M2N),



where the term MN is due to the data preprocessing. Due to
the space limitation, all details, together with a formal proof
of the correctness of the quantum oracle QOF, will be given
in the extended version of the paper.

III. EXPERIMENTS

The following section presents the numerical experiments
conducted to evaluate the effectiveness of the Quantum Out-
lier Detection Algorithm (QODA) on a series of benchmark
datasets. The initial assessment involves testing the effective-
ness of the heuristic used by QODA. The second experimental
evaluation aims at assessing the accuracy of QODA using the
QASM SIMULATOR of Qiskit.

A. Heuristic Evaluation

The following datasets are used as benchmarks to evaluate
the heuristic:

• synth3: M=500 synthetic data with dimension N=20 whose 2%
are outliers.

• synth4: M=500 synthetic data with dimension N=30 whose 2%
are outliers.

• synth1: M=500 synthetic data with dimension N=20 whose 10%
are outliers.

• synth2: M=500 synthetic data with dimension N=30 whose 10%
are outliers.

• lympho: real dataset with M=148, N=18.
• glass: real dataset with M=214, N=9.
• wbc: real dataset with M=278, N=30.

Our experiments can be divided into two types. The first
type is conducted to verify the accuracy of the lower bound
given by Theorem 1. In Table I, we present the approximation
errors, measured in terms of Mean Squared Error (MSE),
Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE), introduced by the relation (1). Our findings indicate
that the lower bound (1) holds for all datasets considered.

TABLE I
APPROXIMATION ERRORS OF RELATION (1)

dataset MSE MAE RMSE
synth1 2.53e-8 1.30e-4 1.60e-4
synth2 1.57e-9 3.37e-5 3.96e-5
synth3 3.02e-8 1.45e-4 1.73e-4
synth4 1.92e-9 3.85e-5 4.38e-5
lympho 3.83e-7 5.27e-4 6.19e-4
glass 7.51-3 5.98e-2 8.66e-2
wbc 3.09e-5 5.21e-3 5.55e-3

The second type of experiment aims to evaluate the effec-
tiveness of outlier detection leveraging the variance of the
differences ∆

(p)
ij instead of the variance of the angles θ(p)ij .

We compare the outlier rankings generated by two methods
to achieve this objective. Table II presents the precision-at-
n (P@n) metric, which we used to conduct this comparison.
Specifically, we calculated P@n by determining the number
of records in the top n ranks identified as outliers using the
differences and angles, respectively. We can see that accuracy
is very high, especially for synthetic datasets. Furthermore,
we utilized the Rank Biased Overlap (RBO) [6] measure to
evaluate the overall outlier ranking of our heuristic, taking as
ground truth the classical algorithm working with the angles.

This metric considers the ranking similarity on the top ranks,
with the weighting determined by a parameter p. A higher
value of p assigns greater importance to the top ranks in the
final similarity calculation. The table indicates that the outlier
rankings obtained by the method leveraging the variance of
differences are similar to the ground truth, particularly for the
highest-ranked outliers.

TABLE II
Precision-at-n (P@n) of the algorithm taking as ground truth the classical

algorithm working with the angles.

dataset n=5 n=10 n=15 n=20 n=25 n=30
synth1 0.80 0.90 0.93 0.90 0.96 0.97
synth2 1.0 1.0 1.0 0.95 0.96 0.93
synth3 1.0 1.0 1.0 0.90 0.84 0.93
synth4 1.0 1.0 0.93 0.95 0.84 0.90
lympho 0.80 0.60 0.67 0.70 0.76 0.77
glass 0.70 0.80 0.80 0.90 0.84 0.87
wbc 0.60 0.70 0.80 0.70 0.60 0.57

TABLE III
RBO MEASURE VARYING THE PARAMETER p

dataset p=0.70 p=0.75 p=0.80 p=0.85 p=0.90 p=0.95
synth1 0.65 0.69 0.74 0.78 0.83 0.88
synth2 0.67 0.71 0.76 0.81 0.86 0.91
synth3 0.88 0.89 0.89 0.90 0.90 0.91
synth4 0.65 0.69 0.74 0.79 0.84 0.88
lympho 0.52 0.54 0.57 0.59 0.62 0.66
glass 0.51 0.55 0.59 0.63 0.68 0.74
wbc 0.60 0.63 0.66 0.68 0.68 0.67

B. Quantum Simulation
Currently, the availability of quantum hardware is limited,

which means that quantum computation can only be simulated
using classical hardware. Nevertheless, simulating quantum
computation on classical hardware is expensive, so we can
only execute basic versions of our algorithm. For this reason,
we run QODA on two simple synthetic datasets with a single
outlier each. The first has M = 5 records with dimension
N = 1, and the second has M = 5 records with dimension
N = 3. By running the experiments with different random
seed values for generating datasets five times, we found that
QODA successfully identifies the sole outlier in both datasets
with a 100% accuracy rate.
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Abstract—In this work, we introduce the Latent Style-based
Quantum GAN (LaSt-QGAN), which employs a hybrid classical-
quantum approach in Generative Adversarial Networks (GANs)
training for arbitrary image generation with quantum circuits.
This novel approach consists of two steps: latent space embedding
and hybrid data generation. We rely on auto-encoders to embed
images into a low-dimensional latent space. The embedded
features are then fed into the hybrid GAN for feature generation
using a classical discriminator and a quantum generator, which
utilizes a style-based architecture. The generated features are
passed back to the classical auto-encoder to reconstruct images.
Our LaSt-QGAN can be trained on realistic computer vision
datasets beyond the standard MNIST, namely FashionMNIST
and SAT4 (Earth Observation images). The paper provides the
practical usage of quantum GAN for image generation and opens
the possibility of applying it to a larger dataset in the future.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

The recent advent in Quantum Computing leads to exploring
possible applications in Quantum Machine Learning (QML) in
the effort to leverage the practical quantum advantage [1], [2]
in the currently existing Machine Learning (ML) techniques.
It is also extended to the context of generative models,
suggesting the possibility of constructing a quantum version of
Generative Adversarial Networks (GANs) [3], one of the most
popular ML methods to learn the implicit data distribution.

Despite recent studies on quantum GANs [4]–[6], it is yet
to come that they will generate an arbitrary number of images
with large sizes. Especially the continuous image space is
difficult to be handled in quantum circuits, which are defined
over discrete computational bases. Furthermore, images are
often too large in size for the current quantum simulators and
real hardware with a limited number of qubits available.

This paper proposes a hybrid GAN approach, which we
call Latent Style-based Quantum GAN (LaSt-QGAN), to
efficiently generate images independent of size. With respect
to previous frameworks, we demonstrate the model capacity
to generate various kinds of images by applying it to the
MNIST, the Fashion MNIST dataset and an Earth observation
image dataset, SAT4 [7]. Although the current model is limited
in terms of complexity due to currently available quantum
hardware, we expect to further scale up the dataset size with
future hardware improvements.

II. GENERAL FRAMEWORK

Our work proposes Latent Style-based Quantum GAN
(LaSt-QGAN), trained in two steps: 1) Embedding images
into latent space using a classical auto-encoder, 2) Generating
latent representations via a quantum GAN, which consists
of a quantum generator and a classical discriminator. This
decomposition of the image formation process has also been
formulated in classical models [8], but never tried in the hybrid
quantum-classical setup.

Encoder

Real
images

Latent space
(Real Features)

Decoder

Quantum
Generator

Random noise

Fake features

Classical
Discriminator

Quantum GAN

Pretrained
AutoEncoder

Recons.
images

Fake
images

Loss

Classical

Optimization

Fig. 1: Schematic diagram for LaSt-QGAN training with
a convolutional auto-encoder and a quantum GAN which
consists of a quantum generator and a classical discriminator.

Fig. 1 illustrates the LaSt-QGAN training schema. Essential
features denoted as x ∈ RDe ∼ Pr of size De, are first
extracted from real images via a classical auto-encoder pre-
trained on the real dataset. Those extracted features are utilized
as the real dataset for the quantum GAN training. At each
step, the generator reproduces fake data x̃ ∈ RDe ∼ Pg from
a latent noise z ∈ RDz and the disciminator distinguishes real
and fake data. At the end of the training, Pg should approach
as close as possible to Pr. The generated features are then
passed back to the and inversely transformed into images.

The n-qubit quantum generator takes the form of a Varia-
tional Quantum Circuit (VQC), Uθ(z), to embed the classical
latent noise z into a quantum state

∣∣Ψθ(z)

〉
in 2n dimensional

Hilbert space H. The particularity of the style-based architec-



(a) MNIST (b) FashionMNIST (c) SAT4

Fig. 3: Examples of images generated via LaSt-QGAN training. The images are presented in columns classified using a pre-
trained ResNet50 for MNIST and FashionMNIST.

MNIST FashionMNIST
Gθ config. # param. FID ↓ JSD (10−2) ↓ FID ↓ JSD (10−2)

LaSt-QGAN

Circ. 1 (d = 2) 1360 17.2± 0.35 1.63± 0.09 29.42± 0.59 1.61± 0.2
Circ. 1 (d = 4) 2280 14.85± 0.34 1.49± 0.18 27.59± 0.56 1.42± 0.1
Circ. 1 (d = 6) 3200 14.13± 0.731 1.29± 0.1 26.89± 0.57 1.28± 0.11
Circ. 2 (d = 6) 2370 14.85± 0.61 1.39± 0.11 28.1± 0.77 1.40± 0.16
Circ. 3 (d = 6) 9900 11.99± 0.56 1.13± 0.12 25.43± 0.4 1.17± 0.23

Classical [50, 30] 2960 18.24± 3.6 4.51± 2.0 28.32± 0.88 2.73± 0.29
[100, 50] 7660 12.56± 0.91 1.56± 0.13 27.36± 1.51 2.81± 0.68

TABLE I: FID and JSD at the end of the GAN training (averaged over 10 runs), evaluated over 10k generated samples (best
results in bold). With a similar model size (≈ 3k parameters), LaSt-QGAN outperforms the classical GAN for all metrics. Our
results are close to the result of SoTA vanilla GAN models for MNIST dataset, which have FID of 7.87 [9] and 12.88 [10].

ture is that the rotation angles in each learning layer, U ℓ
θ(z),

ℓ = 1, ..., L, are also parameterized by the latent noises:

Uθ(z) = UL
θL

(z) · · ·U1
θ1
(z), θℓ =Wℓz+ bℓ (1)

where Wℓ is the weight matrix of size Nangle×Dz with Nangle

the number of rotation angles in QNNs and bℓ the bias. During
the training, the model will learn Θ = {Wℓ,bℓ}ℓ=1,...,L.
In this paper, we test three different quantum learning layer
circuits, U ℓ

θ(z), for further simulations : Circuit1 and Circuit2
are inspired by the quantum circuit presented in Ref. [5]
Ref. [4], respectively, used to learn continuous distribution,
and Circuit3 consists of repeated two-qubit quantum filters
which generate an arbitrary SU(4) state.

At the end of the quantum circuit, we measure the expecta-
tion value of observables to retrieve the classical data. While
the original architecture [5] only measures σz expectation, our
architecture uses both σx and σz expectations, which are then
concatenated to a single vector and passed to the discriminator.
This way of interpreting the quantum output state allows using
only n qubits for De = 2n values, also bringing an advantage
in terms of quantum resources.

III. RESULTS

This section presents the results of LaSt-QGAN trained on
MNIST (28×28 pixels), Fashion MNIST (28×28 pixels) and
SAT4 [7] (28 × 28 × 4 pixels), a 4-class Earth Observation
images with an extra Infrared channel.

We choose the latent noise dimension De = 20 for n = 10
qubit generator with the latent noises of Dz = 10, sampled
randomly from a normal distribution, N (0, 1). The perfor-
mance of LaSt-QGAN is compared with a classical GAN using

the same training scheme but with a classical linear generator
of two hidden layers with [d1, d2] nodes. Furthermore, all the
results are averaged over 10 runs, and the weight initialization
and optimizer hyperparameters are chosen for both models
to guarantee the fastest convergence. Note that the quantum
circuits are simulated on the theoretical simulator.

A. Generic results

Fig. 3 displays the images of different datasets generated
by LaSt-QGAN using the features extracted by the pre-
trained convolutional auto-encoder. The images show that
the model can reproduce images correctly, although further
improvements are required for a higher quality of the results.

Gθ config. FID ↓ JSD ↓
LaSt-QGAN Circ. 3 (d = 2) 168.28± 2.06 2.07± 0.27

Classical [100, 50] 172.6± 5.02 4.25± 0.65

TABLE II: FID and JSD at the end of the GAN training, eval-
uated over 10k generated SAT4 dataset images. We observe
that LaSt-QGAN outperforms the classical benchmark for all
metrics by using only half the number of parameters.

In Tab. I and Tab. II, we compare the best results of LaSt-
QGAN and the classical GAN in terms of Fréchet Inception
Distance (FID) for the quality of images, and Jensen-Shannon
divergence (JSD) for the diversity. Lower the FID and JSD, the
better the results. We can find that with a similar number of
parameters, LaSt-QGAN outperforms the classical benchmark
for all types of datasets not only in terms of quality (FID)
but also in terms of diversity (JSD) in both features and



Fig. 4: Progress in FID and JSD over 10k MNIST sam-
ples generated during the GAN training. We observe faster
convergence and higher stability with LaSt-QGAN than the
classical model for all tested models. Furthermore, our model
always reaches lower JSD compared to the classical model,
highlighting its power to learn the hidden data distribution.

images, proving that the model can successfully learn the
hidden distribution of the real data.

The convergence speed is another important factor in GAN
training. On Fig. 4, the progress in different evaluation metrics
is displayed for LaSt-QGAN and the corresponding classical
counterpart with different architectures. As the results prove,
faster convergence is exhibited for LaSt-QGAN by reaching
the FID value below 20 before 20 training epochs for all depth
d, which is at least twice faster than the classical one. The
faster convergence is even observed using Circuit3 with depth
6 in the LaSt-QGAN , which is composed of more parameters
compared to the classical GAN, proving that this advantage is
independent of the number of parameters. Furthermore, small
standard deviations reveal the stability of training with LaSt-
QGAN during the whole training process, solving the training
instability, one of the major issues in GANs.

B. Dependence on the dataset size

(a) MNIST

Fig. 5: FID and JSD obtained using LaSt-QGAN and the
classical GAN with different MNIST dataset sizes, N . LaSt-
QGAN has higher generalization power for both metrics even
for small N compared to the classical GAN, using a less or
similar number of parameters.

In this section, we train LaSt-QGAN with smaller training
sets for MNIST and compare the results with the classical
GAN to study the generalization power of the quantum gen-
erator. The models are trained on N = 2k · 1000, k = 0, ..., 5
samples and on the whole training set, N = 60000. For each

N , the batch size is also adjusted to keep the same number of
updates in each epoch.

Fig. 5 displays FID and JSD obtained at the end of the
training with different dataset sizes N . LaSt-QGAN results in
better performance in terms of both metrics compared to the
classical GAN with a similar number of parameters for all N ,
proving higher generalization power. In particular, we reach
FID less than 20 only with N = 4k samples with LaSt-QGAN
, while the classical model needs 32k parameters for the same
value. Furthermore, lower standard deviations obtained in all
cases with LaSt-QGAN emphasize once more the stability of
the quantum generator compared to the classical one.

IV. CONCLUSION

In this paper, we introduced our novel LaSt-QGAN frame-
work, which uses a classical latent embedding and quantum
GAN for latent representation learning to investigate the
advantage of using QNNs for image generation. Our results
show that the model can successfully generate images with a
quality comparable to the classical GAN. Especially, different
evaluation metrics prove that the quantum GAN can reach,
even outperform, the performance of classical GAN with a
similar number of parameters in terms of both quality and
diversity for all tested datasets. Furthermore, we investigated
the performance of the models with varying sample numbers
and found that LaSt-QGAN reaches a similar performance
compared to the classical GAN with a smaller dataset size,
showing the practical advantage of the model for generating
images. Ultimately, this work paves the way towards efficient
image generation for the era when the Fault Tolerant Quantum
(FTQ) computers are available.
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Abstract—Chemistry can significantly contribute to the devel-
opment of Quantum Artificial Intelligence. All the molecules
abide by the quantum-mechanical laws. Hence, in principle,
any chemical system can be exploited to encode and process
quantum information. However, it is well-known that decoherent
phenomena hinder quantum computation, and extreme condi-
tions are usually required to manipulate the elementary units
of quantum information, which are the qubits. In this work,
alternative strategies to exploit the computational parallelism of
the molecular quantum world are proposed. They do not require
extreme experimental conditions. They only need to be known
and used after formulating the appropriate algorithms.

Index Terms—molecular conformations, molecular parallelism,
fuzzy entropy, neuromorphic engineering.

I. INTRODUCTION

Any molecule, being a microscopic entity, obeys the laws of
quantum mechanics. Therefore, any molecule can, in principle,
be used to encode quantum information. For instance, a
molecule that has two accessible quantum states, labelled as
|0> and |1>, and can stay in a superposition condition for the
two states can be exploited to encode the elementary unit of
quantum information [1], which is the qubit |Ψ> :

|Ψ> = a|0>+ b|1> (1)

In equation (1), a and b are two complex numbers that verify
the normalisation condition:

a2 + b2 = 1 (2)

The coefficients a2 and b2 represent the probabilities of
having the collapse of the qubit in the |0> and |1> states,
respectively. The qubit can be described as a unit vector in a
two-dimensional Hilbert space. The states |0>and |1> are the
computational basis states and form an orthonormal basis for
this vector space. Therefore, the qubit can also be described
by the function below:

|Ψ> = cos(θ/2)|0>+ eiϕsin(θ/2)|1> (3)

In equation (3), the two angles define a point on the unit
three-dimensional sphere (see Fig.1), called the Bloch sphere
[2]. Logic operations on qubits can be visualised as reversible
rotations of the unit vectors on the Bloch sphere, preserving
the norm of quantum states. Quantum computers promise to be

Identify applicable funding agency here. If none, delete this.

immensely powerful due to their parallelism. For instance, if
a quantum computer consists of n unmeasured qubits, it can
be in an arbitrary superposition of up to 2n different states
simultaneously (the Hilbert space will be of 2n dimensions),
differently from a classical computer that can only be in one
of the 2n states at a time [3]. The superposition can regard
the quantum states of far-apart particles if they are entangled
[4]. The main difficulty in building a quantum computer comes
from the fact that quantum states must constantly contend with
insidious interactions with their environment (for example, a
molecule colliding with another molecule, being all subjected
to Brownian motion fed by thermal energy) that causes loss
of quantum coherence. If so, any qubit collapses in one of
the two constitutive states. The decoherent phenomena bring
about transitions from quantum to classical information [5].
Nevertheless, it is still possible to exploit other forms of
molecular parallelism. These alternative forms of parallelism
have been proposed to implement fuzzy sets and fuzzy logic
systems [6] [7] [8], and they are described in this contribution.
They might blaze an innovative trail in the burgeoning field
of Quantum Artificial Intelligence.

Fig. 1. The qubit |Ψ> is shown in the Bloch sphere.



II. THE FUZZINESS OF THE MOLECULAR WORLD: AN
UNCONVENTIONAL KIND OF QUANTUM PARALLELISM

A. Molecular Fuzzy Sets

When a molecular compound exists in many conformers
and/or it experiences distinct micro-environments, it is describ-
able as a quantum mixed state:

ρ =

N∑

i=1

wi|ψi >< ψi| (4)

In Equation (4), wi represents the weight of the i-th wave-
function and corresponds to its probability. Such a quantum
mixed state ρ has been used to implement a Fuzzy set when
the terms wi (for i = 1, ..., n) have been interpreted as the
degrees of membership of the different |ψi > to ρ. Hence, wi

is also the fuzzy unit of information. The molecular system
represented by ρ has a Fuzzy Entropy H [9] given by:

H = − 1

logN

N∑

i=1

wilog(wi) (5)

H assumes any real value included between 0 and 1. If
the compound exists in just one state (i.e., one conformer
experiencing just one micro-environment), N = 1, wi = 1,
and H = 0. On the other hand, if the compound exists
in N distinct states (as it has N conformers or experiences
N different micro-environments), which are equally probable,
then wi = 1/N and H = 1. Of course, there is an infinite num-
ber of other possibilities which originate H values included
between 0 and 1. The collection of N states, each described
by its wavefunction |ψi> (with i = 1, . . . , N ), constitutes
a molecular fuzzy set. When the compound is perturbed by
proper physical or chemical inputs, the wi values change
simultaneously. It is an unconventional form of quantum
parallelism that allows to process fuzzy information at the
molecular level, and hence what can be named ”quantum-
fuzzy” information.

The determination of the wivalues appearing in Equations
(4) and (5) can be accomplished by recording spectroscopic
time-resolved signals and fitting them through the Maximum
Entropy Method (MEM) [10]. For instance, MEM fits a
fluorescent decay signal (Iem) by using a poly-exponential
function with N terms:

Iem =
N∑

i=1

wie
−t/τi (6)

The relative weight wi of the i-th lifetime (τi) represents
the degree of membership of the wavefunction |ψi> to
the quantum mixed state ρ. The wi values depend on the
“chemical context”. Likewise, in Fuzzy logic, any set has a
shape and position which are sensitive to the context. It is
worthwhile noticing that the determination of H can also be
accomplished through other techniques that allow collecting
morphological, structural distributions, spectroscopic bands or
chromatographic peaks. Any compound or material exhibits
different H values depending on its physicochemical context.

Any context-dependent quantum mixed state is potentially
valuable for processing information in a parallel manner. An
example is shown in Fig.2: it is a molecular ”transistor” that
can be switched through electromagnetic radiation and thermal
energy between two states, SpO and MC. The MC state exists
as an abundant collection of conformers, whose composition
is sensitive to the physicochemical context.

Fig. 2. A molecular transistor assuming two distinct states, SpO and MC.
The MC state exists as a collection of conformers, which is sensitive to the
physicochemical context. This compound can be exploited to implement the
unconventional form of quantum parallelism based on micro-heterogeneity.

B. Granulation of Physicochemical Variables

Further growth of parallelism is achievable when two or
more molecular compounds that exist as quantum mixed
states are joined together. If the number of compounds is
j = 1, . . . ,M , and for each of them the number of quantum
states is i = 1, . . . , Nj , the entire system is describable as the
following quantum mixed state in the case they do not strongly
affect each other:

Π =
M∑

j=1

ρj =
M∑

j=1

Nj∑

i=1

wji|ψji >< ψji| (7)

The sum
∑Nj

i=1 wji = 1 for each j = 1, . . . ,M . The total
Fuzzy Entropy becomes:

H =

M∑

j=1

Hj = −
M∑

j=1

1

logNj

Nj∑

i=1

wjilog(wji) (8)

Each compound is a Fuzzy set, and their mixture allows
the granulation of the physicochemical variables. Systems of
properly selected compounds constitute a strategy to build
Fuzzy Logic Systems and mimic the parallelism of the sensory
systems shown by living beings [11]. For instance, the three
retinals humans have in the photosensitive cells, called cones,
partition the visible spectral region into three fuzzy sets (see
Fig.3). The three retinals work in a sort of quantum parallelism



and confer humans the capability of distinguishing around 200
hues, 20 levels of saturation and 200 levels of brightness, i.e.,
up to almost 1 million of colours.

Fig. 3. Absorption spectra of the three cones on the retina, which granulate
the visible spectral region

Such an approach has been mimicked to implement Biolog-
ically Inspired Photochromic Fuzzy Logic Systems that extend
human vision from the visible to the UV spectral region [12]
[13].

C. The Contribution of Neuromorphic Engineering

Another unconventional chemical strategy to contribute to
the development of Quantum Artificial Intelligence involves
the research field of neuromorphic engineering. In neuromor-
phic engineering, neural surrogates are implemented to design
brain-like computing machines or for neuroprosthesis [14].
Traditionally, neural surrogates are implemented in hardware.
However, some nonlinear chemical systems in wetware (i.e., in
fluid solution) that mimic neural dynamics are also valuable.
They can communicate through optical signals and give rise
to spontaneous synchronization phenomena [15] [16]. When
a surrogate of a pacemaker neuron sends an oscillatory op-
tical signal to a photochromic compound, the latter becomes
coloured, and the values of its chromaticity coordinates (x, y,
and z) oscillate. The response of the photochromic compound
can be depicted through a unitary vector that rotates within
the space defined by the chromaticity coordinates [17]. If two
or more distinct photochromic compounds receive the same
oscillatory signals, they will be represented by distinct vectors
that rotate synchronously like superposed quantum states. It is
possible to manipulate these colour vectors by properly tuning
the wavelength of the excitatory signal sent by the pacemaker
surrogate [18].

D. Perspectives

This contribution highlights some unconventional strategies
to develop Quantum Chemical Artificial Intelligence [7] [19].
These strategies rely on some forms of molecular parallelism,
which do not require the delicate and fragile coherence of
superposed quantum states. They can be technically accom-
plished in much easier and cheaper ways. Therefore, they
should be known by the vast community of scientists who

are contriving new algorithms to face intractable NP problems
and recognise variable patterns more effectively.
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Abstract—In Quantum Annealing problems are encoded in
quantum Hamiltonians (energy functions) and quantum dynam-
ics is used to find solutions (ground states of minimal energy).
Quantum computers such as the D-Wave systems are indeed
implementing those ideas in hardware, as well as ”quantum-
inspired” devices based on classical electronics such as Fujitsu’s
Digital Annealing Unit and all those systems use the same
modeling language: Quadratic Unconstrained Binary Optimiza-
tion (QUBO). However, QUBO is a low-level language and for
modeling classical AI problems such as constraint satisfaction
and constrained optimization problems, we need to introduce
higher-level abstraction in order to define complex constraints.
We investigate different QUBO formulations for the encoding of
integers into Booleans and for the encoding of constraints.

Index Terms—quantum annealing, constraint satisfaction
problems, constrained optimization problems, QUBO, combina-
torial optimization, search algorithms

I. INTRODUCTION

We present in this paper a general overview of previous
works on Quantum Annealing and QUBO modeling which
appeared in several recent publications [1]–[6].

In the domain of Artificial Intelligence, search algorithms and
combinatorial problem solving are old but still very active re-
search fields, cf. SAT (SATisfiability of Boolean formulas) and
Constraint Programming. These topics can obviously benefit
from the advances in Quantum Computing. Indeed, the use of
quantum computers to solve concrete problems in the domain
of combinatorial optimization and decision science, has started
to raise tremendous interest in the last years, in both the gate
model paradigm with the Quantum Approximate Optimization
Algorithm (QAOA) and in the quantum adiabatic computing
paradigm with Quantum Annealing (QA) [7], [8].

QA is conceptually derived from simulated annealing, but
taking advantage of the quantum tunneling effect to overcome
energy barriers and therefore escape local minima during the
computation. A very interesting point is that, because QA is
based on the formulation of problems as Ising models and
the computation of Hamiltonians, it is related to the Quadratic
Unconstrained Binary Optimization (QUBO), which has now
become the standard input language for all Ising Machines [9]:
quantum computers (D-Wave systems, NTT’s Coherent Ising
Machine, NEC quantum annealing processor), ”quantum-
inspired” dedicated hardware (Fujitsu’s Digital Annealer Unit,

Hitachi’s CMOS Annealing Machine) and systems based on
clusters of parallel machines (Toshiba’s Simulated Bifurcation
Machine, Fixstars Amplify Annealing Engine, NEC Vector
Annealing).

However, QUBO is a low-level language and, for modeling
classical AI problems such as constraint satisfaction and con-
strained optimization problems, we need to introduce higher-
level abstractions in order to define complex constraints,
similar to what was done in the domain of Constraint Pro-
gramming [10]. Then, the issue of the different formulations
and encodings of constraints in QUBO appears and provides
interesting research issues.

We would like in this paper to make a global presentation
of the domain of quantum annealing for solving combinatorial
problems from the viewpoint of constraint programming and
present general issues on the modeling aspects of the QUBO
formalism and its use for quantum annealing. We advocate
that, although QA is not yet mature enough to revolutionize
this domain, it opens many interesting research perspectives
and could become an effective challenger to classical methods
in the years to come.

II. QUANTUM ANNEALING AND QUBO

In the last decade, Quantum Annealing (QA) has been
gaining success as a new approach for solving combinatorial
problems, thanks to the development of quantum hardware
such as D-Wave computers [11] and ”quantum-inspired” hard-
ware which makes it possible to experiment on a variety of
abstract or real-life problems [12].

In the QA paradigm, combinatorial optimization problems
can be described by Ising models and Ising Hamiltonians, the
ground states of which correspond to the minimal solutions
of the original problem, see for instance [13]. Interestingly,
Ising models are equivalent to formulations in Quadratic Un-
constrained Binary Optimization (QUBO). Therefore QUBO
has become in the last years the standard input language for
all quantum and quantum-inspired annealing hardware.

Consider n Boolean variables x1, ..., xn, a QUBO problem
consists in minimizing an objective function defined by a
quadratic expression over x1, ..., xn:

∑
i≤j qijxixj

It is therefore usual to represent a QUBO problem by a
vector x of n binary decision variables and a square n × n



matrix Q with coefficients qij , as the problem can be written:

minimize y = xtQx,where xt is the transpose of x

Observe that, as xi are Boolean variables, x2i = xi, thus
this quadratic formulation also includes a linear part, which
corresponds to the coefficients on the diagonal of the Q matrix.

Although it is possible to express simple combinatorial
problems directly in Ising or QUBO models, cf. [13], more
complex problems are better modeled using the notion of
constraints, as developed in the Constraint Programming
paradigm [10]. This is exemplified by the recent development
of Constrained Binary Models (CQM) by D-Wave Inc. [14]
which integrate linear equations and inequations for QUBO
models. However, general constraints are not limited to linear
constraints but can also include symbolic constraints repre-
senting any logical relation between problem variables. Such
constraints can be introduced in QUBO models by adding
penalties (quadratic expressions with minimal value when the
constraint is satisfied) to the objective function. Encoding
constraints as penalties in QUBO can be done in different
ways and an important issue is to relate and compare different
QUBO formulations, in particular for performance evaluation.

III. FROM INTEGER TO BOOLEANS

Constraint Satisfaction Problems (CSPs) and Constrained
Optimization Problems (COPs) are generally modeled in terms
of integer variables and arithmetic or symbolic constraints on
those variables. We thus need to encode these two aspects in
QUBO.

There are mainly two schemes currently used for encoding
integer variables in the QA community: the classical one-hot
encoding and the unary/domain-wall encoding.

One-hot encoding encodes an integer variable x ∈
{1, . . . , n} by n Boolean variables xi that have value 1 if x has
value i and value 0 otherwise. To enforce that each variable
as only one value we need the constraint

∑n
i=1 xi = 1,

which is usually called the one-hot constraint. Remarking that∑n
i=1 xi = 1 ⇐⇒ (

∑n
i=1 xi − 1)2 = 0, we can develop this

quadratic expression and remove the constant term to obtain
the (quadratic) penalty expression for each original integer
variable x, to be added to the QUBO objective function:
−∑n

i=1 xi + 2
∑

i<i′ xixi′

Domain-wall encoding, proposed in [15] in an Ising setting,
encodes an integer variable x ∈ {1, . . . , n} by n− 1 Boolean
variables x′i. Indeed, it is equivalent in a Boolean setting to
the well-known unary encoding on a fixed number of bits:
a number n is encoded by n bits set to 1, followed by
zeros. This is also called thermometer encoding, and gives a
unique unary encoding for each integer. For instance, 1110 is
a valid unary/domain-wall encoding and represents the integer
value 3, while 1001 and 0010 are not valid unary/domain-wall
encodings. To be a valid encoding, we need to enforce the
following constraint [2]: ∀i ∈ {0, . . . , n− 3}, x′i ≥ x′i+1. As
a Boolean constraint x ≥ y can be represented in QUBO by
the (quadratic) penalty y−xy, this corresponds to the following

penalty in QUBO, for each original integer variable x:∑n−3
i=0 (x

′
i+1 − x′i x′i+1)

IV. CONSTRAINTS AS PENALTIES IN QUBO

For more complex problems we need to define different
types of constraints, as exemplified in the Constraint Program-
ming paradigm [10], where problems are modeled by using
a larger vocabulary of constraints, in particular the so-called
”global” or high-level constraints that involve symbolic and
non-linear relations between problem variables.

Constraint expressions can be introduced in QUBO models
as penalties in the objective function to minimize, that is,
as quadratic expressions whose value is minimal when the
constraint is satisfied. An easy way to formulate such a penalty
is to create a quadratic expression which has value 0 if the con-
straint is satisfied and a positive value if the constraint is not
satisfied, representing somehow the degree of violation of the
constraint. [16] describes a set of simple penalty expressions
for basic arithmetic constraints with two Boolean variables.
It also proposes a general scheme to handle linear equations
and also linear inequations by introducing slack variables. An
interesting point is that penalties are compositional, that is,
they can be added together to the QUBO objective function in
order to represent the conjunction of constraints in the original
problem. Nevertheless, when penalty expressions are added to
the objective function, a penalty coefficient pi has to be added
for each penalty expression in order to make it compatible with
the original objective function to optimize. This means that we
have to be sure that the penalties coefficient corresponding to
the constraint are large enough to make such constraint ”hard”,
whereas the objective function is to be considered ”soft”.

Symbolic, non-linear constraints that are commonly used
for modeling COPs and CSPs can also be considered. For
instance, many classical problems such as the N-Queens,
Magic Square, Quadratic Assignment Problem and Travelling
Salesman Problem are subject to the constraint that each
feasible solution forms a permutation. This can be formulated
in QUBO with both one-hot and unary encoding of integers.

Consider n integer variables xi with values in the domain
{1, . . . , n}, each xi being one-hot encoded by n Boolean
variables xij . A permutation constraint on (x1, . . . , xn) can
be encoded in QUBO by 2 × n pseudo-Boolean constraints
representing one-hot constraints: one constraint for each of
the n variables xi stating that it can have only one value k
(i.e., one-hot encoding) and one constraint for each of the n
values k stating that it can be assigned to only one variable xi.
Each of these constraints is a one-hot constraint as described
previously (

∑
xij = 1, with different index sets), generating

thus a penalty of the form described previously.
Adding all such penalties together and simplifying the

quadratic expression gives the overall penalty for the permu-
tation constraint:

n∑

i=1

∑

j<j′

xijxij′ +

n∑

j=1

∑

i<i′

xijxi′j −
n∑

i=1

n∑

j=1

xij



Let us now consider n integer variables x0, . . . , xn−1
with values in the domain {0, . . . , n − 1}, each xi being
unary/domain-wall encoded by n−1 Boolean variables xij . We
observe that (x0, . . . , xn−1) is a permutation of (0, . . . , n−1)
if and only if: ∀j ∈ {0, n− 2} ∑n−1

i=0 xij = (n− 1)− j
Each of these n− 1 pseudo-Boolean equations corresponds

to a penalty: (2(j − n) + 3)
∑n−1

i=0 xij + 2
∑

i<i′ xijxi′j
We can sum up all these n − 1 penalties and obtain the

overall penalty corresponding to a permutation constraint in
unary/domain-wall encoding:

n−2∑

j=0

( (2(j − n) + 3)
n−1∑

i=0

xij + 2
∑

i<i′

xijxi′j )

We can see that the penalties for the permutation constraint
are very different in one-hot and unary/domain-wall encodings
and can have very different performance on some problems [4]

V. LEARNING CONSTRAINT FORMULATIONS IN QUBO
The definition of penalties corresponding to constraints can

be simple (e.g., in the case of the permutation constraint in
one-hot encoding) or sometime more complex (e.g., in the case
of the permutation constraint in unary/domain-wall encoding).

An interesting approach, presented in [6] is to learn the
penalty part of the QUBO matrices corresponding to complex
integer constraints from examples, i.e. from tuples satisfying
the given constraint. This learning process can be done by
combining a limited number of sub-matrix patterns which are
combined in order to create the appropriate QUBO matrix.
Experiments show that this method has good scalability and
is robust, as correct QUBO matrices can be learned over very
scarce data (about 10 training elements only). Complex con-
straints such as permutation, all-different, linear sum, ordered
or channel constraints can indeed be learned automatically.

VI. EXPERIMENTS WITH CONSTRAINT SATISFACTION AND
CONSTRAINED OPTIMIZATION PROBLEMS

We have presented in [1], [3], [4] the QUBO formulation
of well-known Constraint Satisfaction Problems such as N-
queens, Magic Square, and an hard combinatorial problems
such as the Costas Array Problem, as well as some per-
formance results. The Costas Array Problem is interesting
because its natural modeling in not quadratic but quartic
(degree 4) and thus a ”quadratization” phase is needed in order
to produce a QUBO model. The Magic Square Problem is also
interesting because it involves different types of constraints
(many linear equations and a permutation constraint) which
are interacting in the solving process. Moreover experiments
have shown that in this case the unary/domain-wall encoding
if more efficient than one-hot encoding, showing that choosing
the best QUBO formulation is essential in order to have good
performances with annealing solvers.

In [5] we compared the performance of a QUBO model
of the Quadratic Assignment Problem (QAP) executed on
quantum-inspired annealing machines w.r.t. metaheuristics ap-
proaches on classical hardware. Clearly, classical metaheuris-
tics methods are still more efficient, but quantum annealing

could be a possible challenger if quantum annealing systems
can scale up and handle larger instances.

VII. CONCLUSION

We presented the use of quantum annealing for solving
combinatorial problems by utilizing a high-level constraint
language based on integer variables and a large variety of
constraints, which are then translated in QUBO, the input
language of quantum annealing systems. Although current
quantum annealing systems are very limited in the size of
the combinatorial problems that can be handled, they can
provide proof-of-concept experiments. Moreover, quantum-
inspired hardware can be used today to experiment with
medium-size instances and to investigate best solutions for
new encodings or transformations. We believe that with the
progress to be expected for quantum hardware in the next
years, this approach can become a competitive tool for solving
combinatorial problems in the near future.
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Abstract—In this text, we present a study on how
to tackle the de novo genome assembly problem us-
ing quantum annealing. We formulate the problem
as a Quadratic Unconstrained Binary Optimization
(QUBO) problem and embed a QUBO model into a
Dwave quantum annealer. A series of experiments
using simulated annealing and D-Wave quantum
systems are presented.

Index Terms—quantum annealing, quantum opti-
mization, QUBO, de novo genome assembly

I. INTRODUCTION

Quantum annealers are a type of quantum com-
puter focused on optimization. These quantum
annealers have proven to be empirically useful
for several real-world applications.

The de novo Genome Assembly problem is one
of the most important and difficult problems in Bioin-
formatics [1] and deals with the reconstruction of a
whole DNA genome from small redundant frag-
ments of sequences (reads) generated at random
positions of the original genome. This problem
has been proven to be NP-complete [2] so cur-
rent algorithms rely on heuristics to find sub-
optimal solutions in reasonable time. This prob-
lem has a strong impact in the DNA sequencing
efforts worldwide and is key to develop Precision
Medicine [3].

Some authors have already tacked the formu-
lation of the Genome Assembly problem in a
Quantum Annealer ( [4] and [5]). Inspired by the
work of these authors, we set out to first gain
a deep understanding of quantum annealers and
then tackle the de novo genome assembly problem
using D-Wave’s quantum annealers. This work is
a summary of the results obtained in an under-
graduate final thesis published at the University

This work is supported by Grant PID2021-128970OA-I00
funded by MCIN/AEI/10.13039/501100011033/FEDER.

of Granada: https://github.com/Ocete/TFG [6].
In this summary, we briefly describe how to tackle
the genome assembly problem with the use of
quantum annealers by formulating the problem
into a QUBO model and perform experiments on
both simulators and a D-wave quantum annealer.

II. THE GENOME ASSEMBLY PROBLEM

There are different formulations to address the
de novo assembly problem which can be repre-
sented as combinatorial optimization problems on
graphs: Overlap-Layout Consensus (OLC) meth-
ods, de Bruijn graph (DBG) methods, string
graphs, greedy and hybrid methods (for a re-
view see [3]). For our purposes, we will focus
on OCL methods. In these methods, each node
in the graph represents a different DNA read.
Directed edges are associated a weight depending
on how well the connected reads are stitched
together. For the computation of the weights we
will consider the length of the overlap between
the corresponding reads without any mismatch,
with a change of sign. For example, given the
reads r1 = AATT and r2 = TTCC, the perfect
stitching will produce AATTCC, so the overlap
between both reads is 2, giving a weight of −2.

A Hamiltonian path in our overlap graph will
represent a series of reads in a certain order.
By minimizing the total cost of our Hamiltonian
path, we maximize the overlap between reads,
resulting in the shortest possible final chain. This
is exactly the same as solving the Travelling Sales-
man problem (TSP) associated with our overlap
graph.

Let illustrate this process with a toy example
from [4]. Suppose we are given the following four
reads:
• r0 = ATGGCGTGCA



• r1 = GCGTGCAATG
• r2 = TGCAATGGCG
• r3 = AATGGCGTGC

If we compute the overlap between each pair of
reads we obtain the overlap graph from figure 1.
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Fig. 1: OLC graph between the reads r0, r1, r2, r3
from the example. The node number

corresponds to the read number.

A TSP would derive six different types of cycles
in this graph (see Table I).
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TABLE I: Types of cycles in a 4-node graph.

It is easy to check that the Hamiltonian cy-
cle that minimizes the cost in this case is a
cycle of type A. This cycle represents the solu-
tion of the TSP with the minimum cost (−30).
We can easily compute the sequence resulting
from this assembly by traversing the graph and
weaving the reads together - if we start the
cycle in r0 this would result in the sequence:
ATGGCGTGCAATGGCGTGC.

Therefore, given the DNA reads, we will : (a)
compute the overlap graph using a distance be-
tween the reads, (b) formulate the corresponding

TSP into a QUBO model (c) Obtain the Hamil-
tonian path of minimum cost on the graph by
either using a simulated annealer or the D-Wave
quantum annealer, (d) finally, we traverse the
cycle and build the resulting genome sequence.

III. QUBO PROBLEM FORMULATION

Let B = {0, 1} and fQ : Bn −→ R be a quadratic
polynomial over binary variables:

fQ(x) =
n∑

i=1

i∑

j=1

qijxixj

where xi ∈ B for i ∈ {1, · · · , n} and coefficients:
qij ∈ R for 1 ≤ j ≤ i ≤ n. A quadratic un-
constrained binary optimization problem (QUBO)
requires to find the binary vector x′ minimizing:

fQ : x′ = argmin
x∈Bn

fQ(x)

In matrix notation: fQ(x) = xTQx, where Q
is a symmetric matrix of size n × n containing
coefficients qii in its diagonal and qij/2 in position
(i, j) if i ̸= j.

To formulate the genome assembly as a QUBO,
we start from an OLC graph G containing
nodes v1, . . . , vn, and weights wi,j for every
i, j ∈ [1, . . . , n], and our goal is to find a
hamiltonian path of minimum total weight.

We define n2 binary variables xi,j . xi,j is set
to 1 if and only if the path walks through node
i at time point j. We also need to add more
restrictions in order to obtain valid hamiltonian
walks: we can only walk through one node at
a specific time point j (position restriction) and
we never walk through a node twice (repetition
restriction). The final optimization function is the
following:

Minimize
n−1∑

i=0

n−1∑

j=0

wi,j

n−1∑

p=0

xi,pxj,p+1

+ a
n−1∑

i=0

n−1∑

p=0

xi,p (self-bias)

+ b
n−1∑

i=0

( n−1∑

p=0

xi,p − 1
)2

(repetition)

+ c

n−1∑

p=0

( n−1∑

i=0

xi,p − 1
)2

(position)

(1)



Where a, b, c are penalty parameters for each
restriction. In the experimentation, we set a = −X
and b = c = X for different values of X .

IV. EXPERIMENTATION AND PRELIMINARY
RESULTS

In order to configure the samplers and submit
jobs to D-Wave quantum annealers we used the
D-Wave Ocean Software, a suite of tools provided
by D-Wave to use their quantum systems [7].
Using python and the provided packages we
connected to Leap, a ’quantum’ cloud service that
provided access to Dwave’s quantum computers
[8].

To solve this problem we used the proposed
QUBO formulation for the TSP and we first run a
Simulated Annealer from D-Wave Ocean Software.
We ran the same experiment 10.000 times with
parameter X = 1.6 to get the distribution of
solutions shown in Table II. Results showed that
the best type of cycle (type A) agglomerates most
of the samples, 37.22%. In the second place, the
four types of cycles that have the exact same
energy (C, D, E and F) also have similar number
of samples. It is worth mentioning that there was
not a single sample that encoded an invalid cycle.
This means that the penalties values used for the
experiment (1.6 for multi-location and repetition,
and −1.6 for self-bias) are working to prevent
invalid cycles.

Cycle type Freq. (X=1.6) Energy
Type A 3722 -7.9811
Type C 1474 -7.4541
Type D 1469 -7.4541
Type F 1458 -7.4541
Type E 1431 -7.4541
Type B 446 -6.927

TABLE II: Distribution of solutions for 10.000
runs on D-wave’s Simulated Annealer.

We repeated the experimentation with the D-
wave quantum annealer with 2000 qubits. For this
purpose, we embedded the graph of solutions
into the Chimera topology with D-Wave Ocean
Software [7]. We tested the performance of the
system with two different penalty values X = 1.6
(as in simulated annealing) and X = 1.5. Results
are shown in table III.

Cycle type Freq. (X=1.5) Freq. (X=1.6) Energy
Type A 131 50 -7.9811
Type C 124 46 -7.4541
Type D 40 91 -7.4541
Type F 55 117 -7.4541
Type E 112 118 -7.4541
Type B 99 64 -7.4541
Invalid 9221 9194 > -5.6433

TABLE III: Distribution of solutions for 10.000
runs on D-Wave 2000Q.

Results obtained in the D-wave 2000Q quantum
annealer showed a percentage of valid solutions
below 10% of the solutions found for both penalty
parameters (see Table III). Also, the distribution of
valid solutions was not the expected for penalty
parameter X = 1.6, since type A cycles (solutions
with the lowest energy) were not the most fre-
quent valid solutions found. Penalty parameter
X = 1.5 provided a similar percentage of invalid
solutions but significantly different distribution of
valid solutions, as can be seen in the table III.
Further research is being performed to identify
potential causes for this behaviour to increase the
number of valid solutions, explore new D-wave
topologies and perform scalability studies for this
problem.
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Abstract—In Weighted Model Counting (WMC) we are given a
propositional formula and a weight for each literal and we want
to compute the sum of the weights of the models of the formula.
In Most Probable Explanation (MPE) we seek the model with the
highest weight while in Maximum A Posteriori (MAP) we look
for the state of a subset of variables that maximizes the sum of
the weights of the models that agree on that state. WMC, MPE
and MAP find interesting applications in inference for graphical
models.

In this paper, we propose QWMC, QMPE and QMAP,
quantum algorithms for performing WMC, MPE and MAP,
respectively. They are all based on the quantum search/quantum
model counting algorithms that are modified to take into account
the weights.

In the black box model of computation, where we can only
query an oracle for evaluating the Boolean function given an
assignment, QWMC solves the problem approximately with a
complexity of Θ(2

n
2 ), where n is the number of Boolean variables,

while classically the best complexity is Θ(2n), thus achieving a
quadratic speedup. QMPE and QMAP require O(1/

√
WMC)

oracle calls, where WMC is the normalized between 0 and 1
weighted model count of the formula, while a classical algorithm
has a complexity of Ω(1/WMC), again obtaining a quadratic
speedup.

Index Terms—Quantum Search, Quantum Model Counting,
Weighted Model Counting, Most Probable Explanation, Maxi-
mum A Posteriori

I. INTRODUCTION

Weighted Model Counting (WMC) [1] generalizes model
counting by assigning weights to literals: the aim is to compute
the sum of the weights of the models of a propositional
formula, where the weight of a model is given by the product
of the weights of its literals. WMC was successfully applied
to the problem of performing inference in graphical models
[1], [2].

The Most Probable Explanation (MPE) [3] problem involves
finding an assignment to all variables that satisfies a Boolean
formula and has the maximum weight. The related Maximum
A Posteriori (MAP) problem means finding an assignment of
a subset of the variables such that the sum of the weights
of the models of the formula that agree on the assignment is
maximum.

In this paper we propose to use quantum computing for
performing WMC, MPE and MAP. We call QWMC, QMPE
and QMAP the quantum algorithms for performing WMC,
MPE and MAP respectively. These quantum algorithms are
based on the method of quantum model counting [4], [5],
which we modify to take into account weights. Quantum

This research was partly supported by TAILOR, a project funded by EU
Horizon 2020 research and innovation programme under GA No 952215 and
by the ‘National Group of Computing Science (GNCS-INDAM)”.

model counting in turn is based on quantum search using
Grover’s algorithm [6]–[8] and on quantum phase estimation
[9], the latter using the quantum Fourier transform [10]. In
particular, the proposed algorithms modify the algorithms for
unweighted counting and search by replacing the Hadamard
gates with rotation gates, with the rotations depending on the
weights. Moreover, QMAP differs from unweighted quantum
search also because only a subset of the qubits is measured.

QWMC, QMPE and QMAP work under a black box com-
putation model where we only have the possibility of querying
an oracle giving the value of the formula for an assignment
of the propositional variables. QWMC takes Θ(2

n
2 ) oracle

calls, while any classical algorithm takes Θ(2n) oracle calls,
thus achieving a quadratic speedup. Similarly, QMPE and
QMAP take O(1/

√
WMC) oracle calls, where WMC is the

weighted model count normalized between 0 and 1, while a
classical algorithm has a complexity of Ω(1/WMC). QMPE
and QMAP can also be seen as methods for sampling assign-
ments with a probability distribution given by the weights.

This article is a summary of [11] (under submission) that in
turn extends [12] by adding the QMPE and QMAP algorithms.
All the proofs of the results in this paper can be found in [11].

Section II introduces the WMC, MPE and MAP problems.
Section III discusses the QWMC algorithm, while Section
IV presents QMPE and QMAP and Section V concludes the
paper.

II. WMC, MPE AND MAP PROBLEMS

Let X be a vector of n Boolean variables [X1, . . . , Xn]
and let x be an assignment of values to X , i.e., a vector of
n Boolean values [x1, . . . , xn]. We call x a world. Consider a
propositional logic formula φ over X . If an assignment x of
variables X makes formula φ evaluate to true, we write x |= φ
and we say that x satisfies φ. We can also see φ as a function
from {0, 1}n to {0, 1} and express that x makes φ evaluate to
true by φ(x) = 1.

Given a formula φ in propositional logic over literals L
(Boolean variables or their negation), and a weight function
w : L → R≥0, the weighted model count (WMC) is defined
as: WMC(φ,w) =

∑
x:x|=φWx, where Wx =

∏
l∈x w(l) is

the weight of model x according to weight function w.
The most probable state (MPE) of the variables is

MPE(φ,w) = argmaxx:x|=φWx.
Given a set of query variables Q, the most probable

state of the query variables (MAP) is MAPQ(φ,w) =
argmaxq

∑
y:qy|=φWqy where qy is a world where variables

in Q take value q and variables in Y = X \Q take value y.



S R W φ weight

0 0 0 1 0.45 · 0.7 · 0.3 = 0.0945
0 0 1 1 0.45 · 0.7 · 0.7 = 0.2205
0 1 0 0 0.45 · 0.3 · 0.3 = 0.0405
0 1 1 1 0.45 · 0.3 · 0.7 = 0.0945
1 0 0 0 0.55 · 0.7 · 0.3 = 0.1155
1 0 1 1 0.55 · 0.7 · 0.7 = 0.2695
1 1 0 0 0.55 · 0.3 · 0.3 = 0.0495
1 1 1 0 0.55 · 0.3 · 0.7 = 0.1155

TABLE I: Worlds for Example 1.

|0〉⊗t

|0〉⊗n+1

H⊗t

H⊗n+1
G20 G21

· · ·

G2t−1

FT †

Fig. 1: Circuit for quantum counting.

Example 1. Consider the Boolean formula φ = (¬S ∨W ) ∧
(¬R ∨W ) ∧ (¬S ∨ ¬R). Suppose the weights of literals are
w(S) = 0.55, w(¬S) = 0.45, w(R) = 0.3, w(¬R) = 0.7,
w(W ) = 0.7 and w(¬W ) = 0.3. Table I shows the worlds
together with the weight of each world. The WMC of φ is thus
WMC(φ,w) = 0.0945 + 0.2205 + 0.0945 + 0.2695 = 0.679.

The MPE is MPE(φ,w) = [1, 0, 1] and the MAP of query
variables S and W is MAPSW (φ,w) = [0, 1].

III. QUANTUM WEIGHTED MODEL COUNTING

The circuit for quantum counting [4], [5] is shown in Figure
1, where the second register has an extra bit Xn+1 and formula
φ is changed to φ ∧ Xn+1. This is done in order to ensure
that the model count is smaller than half the number of all
assignments.

The circuit for performing quantum weighted model count-
ing differs from the one in Figure 1 because the Hadamard
operations applied to the lower register are replaced by rota-
tions Ry(θi) where i is the qubit index except for the extra
qubit for which the Hadamard operator is kept. Overall the
gate H⊗n+1 is replaced by gate Rot shown in Figure 2. θi
is computed as θi = 2 arccos

√
1− wi where wi = w(Xi)

and we suppose that the literal weights sum to 1, i.e., that
w(Xi) + w(¬Xi) = 1 for all bits Xi. The general case can
be treated by using normalization.

The rotations prepare the state

|ϕ〉 =
n⊗

i=1

(
√

1− wi |0〉+
√
wi |1〉)⊗ 1√

2
(|0〉+ |1〉) (1)

If we define the normalized states

|γ〉 =
1√

1+
∑
x:φ(x)=0Wx

2


∑

x

√
Wx

2
|x0〉+

∑

x:φ(x)=0

√
Wx

2
|x1〉




|δ〉 =
1√∑

x:φ(x)=1Wx

2

∑

x:φ(x)=1

√
Wx

2
|x1〉 ,

then |ϕ〉 can be expressed as

|ϕ〉 = cos θ/2 |γ〉+ sin θ/2 |δ〉 (2)

Ry(θ1)

Ry(θ2)

· · ·
Ry(θn)

H

Fig. 2: Circuit for gate Rot.

Q

Ancilla

n+1

q

oracle

|x〉 → (−1)f(x) |x〉

Rot†

phase
|0〉 → |0〉
|x〉 → − |x〉

for x > 0

Rot

Fig. 3: Weighted Grover operator WG.

where

cos θ/2 =

√
1 +

∑
x:φ(x)=0Wx

2
(3)

sin θ/2 =

√∑
x:φ(x)=1Wx

2
(4)

Gate Rot replaces H⊗n+1 also in the Grover operator G that
becomes the weighted Grover operator WG shown in Figure
31: The application of the weighted Grover operator rotates
|ϕ〉 in the space spanned by |γ〉 and |δ〉 by angle θ so eiθ

and ei(2π−θ) are the eigenvalues of WG. θ can be found by
quantum phase estimation.

We thus obtain

WMC(φ,w) =
∑

x:φ(x)=1

Wx = 2 sin2(θ/2)

Theorem 1. QWMC on n bits requires Θ(
√
N) oracle calls

to bound the error to 2−
n+1
2 with probability 11/12 using

t = dn/2e+ 5 bits.

Theorem 2. The complexity of any classical algorithm for
estimating WMC(φ,w) with a probability of at least 3/4
within an accuracy of 2−d

n
2 e is Ω(N) oracle calls.

Therefore QWMC offers a quadratic speedup over classical
computation.

IV. QUANTUM MPE AND MAP

As for QWMC, suppose that the literal weights sum to 1. We
perform quantum MAP by modifying the circuit for quantum
search [6]–[8] as we modified the circuit for quantum counting
in order to do QWMC. The circuit for performing quantum
MAP (QMAP) is shown in Figure 4 and, similarly to the circuit
for performing QWMC, the Grover operator is replaced by
the Weighted Grover operator WG shown in Figure 3 and the
initial H⊗n+1 gate is replaced by gate Rot of Figure 2. We
suppose that the query bits come first and there are l of them,
let us call Q the query bits, while the non query bits are called

1The previous paper [12] erroneously used G in place of WG



Q

|0〉⊗l

Y ′
|0〉⊗n−l+1

Ancilla
|0〉⊗a

Rot

WG WG · · · WG

· · ·

R

Fig. 4: The complete QMAP circuit.

Y and there are n − l of them. Let Y ′ be Y with the extra
qubit Xn+1, so overall Y ′ has n− l + 1 bits.

The rotations prepare the state in Eq. 1 that can be expressed
as in Eq. 2. The application of the weighted Grover operator
rotates |ϕ〉 in the space spanned by |γ〉 and |δ〉 by angle θ of
Eq. 3.

If we perform R rotations where R is

R = CI


 arccos

∑
x:φ(x)=1Wx

2

2 arcsin
∑
x:φ(x)=1Wx

2




and CI indicates the closest integer, we maximize the prob-
ability of measuring a state of |δ〉, i.e., a state x such that
φ(x) = 1. R can be computed with QWMC.

Now we measure only the query qubits. Suppose that the
results of the rotation brings |ϕ〉 exactly to |δ〉. Let’s apply
the measurement {Mm = |qm〉 〈qm|} to system Q where qm
is one of the computational basis state for Q. Then

P (m) =

∑
y:φ(qmy)=1Wqmy

0.5 ·WMC(φ,w)

So this algorithm returns configurations of query bits qm with
a probability that is proportional to

∑
y:φ(qmy)=1Wqmy .

Consider now the case that the final state is a |γ〉 + b |δ〉
instead of simply |δ〉. As for Grover’s algorithm, the error on
the angle in the final state is at most θ/2 so the amplitude
a of |γ〉 in case of maximum error is a = cos(π/2 ±
θ/2) = ∓ sin θ/2 = ∓

√∑
x:φ(x)=1Wx

2 So the probability of

measuring a value from γ is at most
∑
x:φ(x)=1Wx

2 and the
probability of measuring a value from δ (a solution) is at least
1−

∑
x:φ(x)=1Wx

2 .
In the case in which Y = [Xn+1], we are performing MPE

inference and we call the algorithm QMPE.
We can use this algorithm as a probabilistic algorithm: we

execute it for o iterations. At each iteration, we measure all Q
bits obtaining qm. After o iterations, we return the value that
was found most frequently.

Theorem 3. The number of applications of WG (and thus
of oracle calls) required to maximize the probability of
measuring one of the solutions in QMAP and QMPE is
O( 1√∑

x:φ(x)=1Wx
).

Theorem 4. Any classical probabilistic algorithm for solving
MPE or MAP under the black box model of computation takes
Ω( 1∑

x:φ(x)=1Wx
) oracle queries.

Thus QMPE and QMAP achieve a quadratic speedup.

V. CONCLUSIONS

We have presented quantum algorithm QWMC, QMPE
and QMAP for solving WMC, MPE and MAP respec-
tively. We have shown that QWMC has a complexity of
Θ(2

n
2 ) evaluations of the Boolean formula, while QMPE and

QMAP solve their respective problems with a complexity of
O(1/

√
WMC). We have also shown that if we consider the

Boolean formula as a black box that we can only query asking
for the value of the function given the inputs, these algorithms
provide quadratic speedups over classical algorithms with the
same limitation. The black box setting may be of interest when
the Boolean formula is given by a quantum physical system of
which we don’t know the internals. In that case the quantum
algorithms can plug in the system directly, improving over
classical algorithms.
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Università degli Studi di Perugia
Perugia, Italy

marco.baioletti@unipg.it

2nd Francesco Santini
Dipartimento di Matematica e Informatica
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Abstract—We propose an encoding of different NP-complete
problems in extension-based Abstract Argumentation into
Quadratic Unconstrained Binary Optimisation problems. The
obtained formulation can be then solved by using quantum
annealers, as already accomplished in preliminary tests.

Index Terms—Abstract Argumentation, Quadratic Uncon-
strained Binary Optimisation.

I. INTRODUCTION

Formal Argumentation can be credited to the pioneering
works in logics of Pollock [1] and other authors. The premise
is that (non-monotonic) reasoning can be done by creating
and assessing arguments, which are made up of several justi-
fications for a claim’s validity. Arguments differ from proofs
in that they are defeasible: whether a claim can be accepted
depends not only on whether an argument supporting it exists,
but also on whether potential opposing arguments exist, which
can then be contested by attacking arguments, and so on.

The Abstract Argumentation theory of Dung [2] provides
the foundation for a lot of current argumentation research.
An argumentation framework, which is essentially a directed
graph with the arguments represented as nodes and the attack
relation represented by arrows, is the key idea in this study.
An analysis of the question of which set(s) of arguments can
be accepted, given such a network, leads to the definition of
argumentation semantics.

The argumentation is said to be “abstract” because argu-
ments have no internal structures and there is no specification
of what an argument or an attack is. It is however enough to
represent conflict among information, and it has connections
with well-founded semantics of logic programs [2].

In regard to Abstract Argumentation, a number of proposals
have been made in the literature; in Section II-A we summarise
the background on some NP-complete problems that are
related to extensions, which are sets of arguments that can
survive the conflict together and thus represent collectively a
reasonable position an autonomous reasoner might take.

A Quadratic Unconstrained Binary Optimisation prob-
lem [3] (QUBO), is a mathematical formulation that encom-
passes a wide range of critical Combinatorial Optimisation
problems. QUBO problems are NP-complete, and a vast liter-
ature is dedicated to approximate solvers based on heuristics or
meta-heuristics, such as simulated annealing approaches (SA),
tabu-serch, genetic algorithms or evolutionary computing [4].

Quantum annealers and Fujitsu’s digital annealers1 can be
used to find global minima by using quantum fluctuations.
QUBO models are at the heart of experimentation with quan-
tum computers built by D-Wave Systems.2

In this paper, we propose encodings of different Abstract
Argumentation problems that are NP-complete problems as
well. The results, here summarised, are new with respect to
the pioneering work in [5]. As a general result, our goal is
to deepen the research line opened there with the purpose of
modelling and solving a wide range of these kinds of reasoning
problems, with the help of quantum machines.

II. BACKGROUND

A. Argumentation.

An Abstract Argumentation Framework (AF, for short) [2]
is a tuple F = (A, R) where A is a set of arguments and R is
a relation R ⊆ A×A. For two arguments a, b ∈ A the relation
aRb means that argument a attacks argument b. An argument
a ∈ A is defended by S ⊆ A (in F) if for each b ∈ A such
that bRa there is some c ∈ S such that cRb. A set E ⊆ A is
conflict-free (cf in F) if and only if there are no a, b ∈ E with
aRb. E is admissible (ad in F) if and only if it is conflict-free
and each a ∈ E is defended by E. Finally, the range of E
in F , i.e., E+

F , collects the same E and the set of arguments
attacked by E: E+

F = E ∪ {a ∈ A | ∃b ∈ E : bRa}.
The collective acceptability of arguments depends on the

definition of different semantics [2]. Semantics determine sets
of jointly acceptable arguments, called extensions, by mapping
each F = (A, R) to a set σ(F) ⊆ 2A, where 2A is the power
set of A, and σ parametrically stands for any of the considered
semantics. The extensions under complete, preferred, stable,
and semi-stable semantics are defined as follows. Given F =
(A, R) and a set E ⊆ A, E ∈ co(F) iff E is admissible in F
and if a ∈ A is defended by E in F then a ∈ E; E ∈ pr(F)
iff E ∈ co(F) and there is no E′ ∈ co(F) s.t. E′ ⊃ E;
E ∈ sst(F) iff E ∈ co(F) and there is no E′ ∈ co(F) s.t.
E′+F ⊃ E+

F ; E ∈ st(F) iff E ∈ co(F) and E+
F = A,

Figure 1 shows an AF with five arguments and five at-
tacks. Given F , the set of complete extensions is co(F) =

1Fujitsu’s digital annealer: https://www.fujitsu.com/global/services/busine
ss-services/digital-annealer/.

2D-Wave webiste: https://www.dwavesys.com.
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Fig. 1: An example of WAAF.

Ver-σ DC-σ DS-σ Ex-σ NE-σ
Conflict-free in L in L triv. triv. in L
Admissible in L NP-c triv. triv. NP-c
Complete in L NP-c P-c triv. NP-c
Preferred coNP-c NP-c

∏P
2 -c triv. NP-c

Semi-stable coNP-c
∑P

2 -c
∏P

2 -c triv. NP-c
Stable in L NP-c coNP-c NP-c NP-c

TABLE I: The complexity of some problems in Abstract Argumentation.

{{a}, {a, d}, {a, c, e}}, while st(F) = {{a, d}, {a, c, e}} is
the set of stable extensions, for example.

We now report the definition of six well-known decision
problems in Abstract Argumentation. Credulous acceptance
DC-σ: given F = (A, R) and an argument a ∈ A, is a
contained in some E ∈ σ(F)? Sceptical acceptance DS-σ:
given F = (A, R) and an argument a ∈ A, is a contained
in all E ∈ σ(F)? Verification of an extension VER-σ: given
F = (A, R) and a set of arguments E ⊆ A, is E ∈ σ(F)?
Existence of an extension EX-σ: given F = (A, R), is
σ(F) ̸= ∅? Existence of non-empty extension NE-σ: given
F = (A, R), does there exist E ̸= ∅ such that E ∈ σ(F)?

In addition, the work in [6] presents the task of extension
enforcement: we consider the objective to change the attack
relationship R of a framework F = (A, R) such that a given
set T ⊆ A becomes (a subset of) an extension under a
given semantics σ. In this case, we say that the enforcement
is argument-fixed, since only the attack relationship can be
modified. Strict enforcement is satisfied if T is a σ-extension,
while in non-strict enforcement T is only required to be a
subset of a σ-extension. If we consider the Hamming distance
of the changes, i.e., |R∆R′| = |R \R′|+ |R′ \R|, in [6] the
authors impose a threshold |R∆R′| ≤ k as a further parameter
of these problems. The complexity of some of these problems
is reported in Tab. II.

In this paper, as proposed in [7], we look at the problem
from an optimisation point of view:

Definition 1 ( [7]). Given F = (A, R), T ⊆ A, and semantics
σ, strict extension enforcement is an optimisation problem
where to goal is to find F∗ = (A, R∗) s.t.:

R∗ ∈ argmin
R′∈enfst(F,T,σ)

|R∆R′|

where enfst(F , T, σ) = {R′|F ′ = (A, R′), T ∈ σ(F ′)}.
Similarly, we can define the same problem by considering non-
strict enforcement (by defining enfnst).

B. QUBO

Quadratic Unconstrained Binary Optimisation (QUBO) [8]
is a form of optimisation problems encompassing e.g.
SAT/Constraint/(0,1)-ILP, which recently gained great popu-
larity because of fast solvers and dedicated computing devices,
such as quantum and digital annealers. A QUBO problem

σ strict non-strict
Admissible P NP-c
Complete NP-c NP-c
Preferred

∑P
2 -c NP-c

Stable P NP-c
Grounded NP-c NP-c

TABLE II: The complexity of extension enforcement [7].

is defined in terms of n binary variables x1, . . . , xn and a
n×n upper-diagonal matrix Q and consists in minimising the
function f(x) =

∑n
i=1Qi,ixi+

∑n
i<j Qi,jxixj . The diagonal

terms Qi,i are the linear coefficients and the non-zero off-
diagonal terms Qi,j are the quadratic coefficients. This can be
expressed more concisely as minx∈{0,1}n xTQx, where xT

denotes the transpose of the vector x. The formulation of
problem in QUBO consists in i) find a binary representation
for the solutions, ii) define a penalisation function, which
penalises unfeasible solutions (i.e., violating a constraint).

III. ENCODING OF PROBLEMS

A. A Formulation in QUBO of Acceptance Tasks

In [5] we proposed for the first time an encoding of two
well-known NP-complete problems in Abstract Argumentation
as QUBO problems: DC-σ and Exists-σ¬∅, while the consid-
ered semantics was only co. Moreover, in [5] we solved this
problem on some frameworks by directly implementing them
by using the D-Wave Ocean SDK. We both used a simulated
annealing algorithm and a real quantum annealer provided by
the LeapTM Quantum Cloud Service.3

With respect to [5], by continuing on this research line,
we have extended the encoding to all classical NP-complete
problems highlighted in bold in Tab. I. Moreover, we have
empirically validated all the encodings by comparing the
obtained results with the simulated annealing algorithm against
ConArg [9], an exact solver using Constraint Programming.

We present a QUBO encoding of some of the Abstract
Argumentation problems in Sect. II. We assign to each ar-
gument an index, hence A = {a1, . . . , an}, where n is the
number of arguments. We use a set of n binary variables
x1, . . . , xn to represent a set E of arguments: ai ∈ E if and
only if xi = 1. We denote by x the tuple (x1, . . . , xn) and by
x ∈ {0, 1}n a vector of possible values for x1, . . . , xn. Each
semantics σ will be associated with a quadratic penalisation
function (or Pfunction for short) Pσ such that Pσ assumes
its minimum value at x if and only if the corresponding set
E = {ai ∈ A : xi = 1} is an extension valid for σ.

Most of the argumentation semantics require admissible
sets. Hence, we define a Pfunction Padm which enforces this
property. Padm is the sum of four terms and contains new
additional variables. The first term forces the set E to be
conflict-free: Pcf =

∑
iRj or jRi xixj . In fact, the value of

Pcf corresponds to the number of self attacks in E and its
value is 0 if and only if E is conflict-free.

The constraints to model the notion of defence are
more complicated: we use a first set of additional variables
t1, . . . , tn, denoting which arguments are attacked by E:

3D-Wave Ocean SDK: https://github.com/dwavesystems/dwave-ocean-sdk.



ti = 1 if and only if ai is attacked by some argument of
E. The variables d1, . . . , dn of the second set denote which
arguments are defended by E: di = 1 if and only if ai is
defended (from all the possible attacks) by some arguments
of E. For each argument ai, the Pfunction P i

t forces ti to be
1 if and only if ai is attacked by E, i.e., ti =

∨
jRi xj .

Let hi be the number of attackers of ai and let i1, . . . , ihi

be their indices. If hi = 0, then ti is simply 0, while if
hi = 1, then ti = xh1 : in these cases, we set P i

t =
0. If hi = 2, then P i

t = OR(ti, x[i1], x[i2]), where
OR(Z,X, Y ) = W + X + Y + XY − 2Z(X + Y ) is
the way of expressing as a quadratic function the constraint
that the binary variable Z is the disjunction of the binary
variables X and Y , as shown in [10]. Finally, if hi >
2, then P i

t = OR(ti, x[i1], α
1
i ) + OR(α1

i , x[i2], α
2
i ) + . . .

+OR(αhi−3
i , x[ihi−2], α

hi−2
i )+OR(αhi−2

i , x[ihi−1], x[ihi ]),,
where α1

i , . . . , α
hi−2
i are hi − 2 auxiliary binary variables.

The other Pfunction P i
d forces di to be 1 if and only if

ai is defended by E, i.e., di =
∧

jRi tj . If hi = 0, then di
is simply 1, while if hi = 1, then di = th1

: in these cases,
P i
d = 0. If hi = 2, then P i

d = AND(di, t[i1], t[i2]), where
AND(Z,X, Y ) = 3Z +XY − 2Z(X +Y ) is the way of ex-
pressing the conjunction Z = X and Y as a quadratic function
[10]. Otherwise, if hi > 2 then P i

d = AND(di, t[i1], δ
1
i ) +

AND(δ1i , t[i2], δ
2
i ) + . . . +AND(δhi−3

i , t[ihi−2], δ
hi−2
i ) +

AND(δhi−2
i , t[ihi−1], t[ihi ]), where δ1i , . . . , δ

hi−2
i are new

hi − 2 auxiliary binary variables.
The number of auxiliary variables needed for this encoding

is hence N = 2n + 2
∑n

i=1 max(hi − 2, 0), excluding the
n variables x1, . . . , xn. Note that, if h = maxhi, then
N = O(nh). The final term Pdef =

∑n
i=1 xi(1 − di)

forces each argument in E to be defended by E. Summing
up, the Pfunction for admissible sets is Padm = Pcf +∑n

i=1 P
i
t +

∑n
i=1 P

i
d + Pdef . It is easy to prove that the

minimum value of Padm is 0 and the related values for x
correspond to admissible sets. For the complete semantics,
we simply need to add an additional term to Padm which
forces all the arguments defended by E to be elements of E:
Pco = Padm +

∑n
i=1(1− xi)di.

B. Formulation in QUBO of extension enforcement

The task of extension enforcement can be formulated with
similar techniques. Let us focus on the strict version of this
problem. In order to simplify the notation, the arguments in
the set T are the first k arguments a1, . . . , ak in A.

We use a first set of binary variables rij , for i, j = 1, . . . , n.
Each variable rij is 1 whether in the new attack relationship
R′, ai attacks aj . Moreover, we use the binary variables ti,
for i = 1, . . . , n, and di, for i = 1, . . . , k, as in the encoding
of the acceptance.

We define a penalty function P r
co which is zero if and only

if T is complete set under the attack relationship described by
rij . P r

co is the sum of 5 terms.
The first term P r

cf =
∑k

i,j=1 rij . enforces the set T to be
conflict-free, in fact when rij = 1, with i, j ≤ k, we have a
self attack in T .

The second term is P r
t =

∑n
i=1 P

r,i
t , where P r,i

t , for each
i = 1, . . . , n, enforces the constraint ti =

∨k
j=1 rji, which

means that ti = 1 if and only if the argument ai is attacked
by some argument aj ∈ T . This term is encoded in QUBO
using auxiliary binary variables, similar to what is done for
P i
t .
The third term is P r

d =
∑k

i=1 P
r,i
d , where P r,i

d , for each
i = 1, . . . , k, enforces the constraint di =

∧n
j=1(rji =⇒ tj),

which means that di = 1 if and only if the argument ai ∈ T
is defended against all its attacker by some elements of T .
This term is encoded in QUBO using a new set of auxiliary
variables to represent the implication (rji =⇒ tj), other than
the same auxiliary variables used for P i

d.
The fourth term is simply

∑k
i=1(1 − di), which requires

that all arguments in T are defended, while the last term is∑n
i=k+1 di, which add a penality for each argument defended

by T , but not belonging to T .
The overall objective function to be minimized is f =∑
aiRaj

(1−rij)+
∑
¬aiRaj

rij +λP
r
co, where λ is a constant

large, such that the minimum of f is obtained for P r
co = 0.

IV. CONCLUSION

We introduced NP-complete problems in Abstract Argu-
mentation that may benefit from QUBO encodings and their
solution on quantum annealers. We summarised only some of
them since others exist that consider, for example, weighted
arguments and/or attacks. Moreover, further investigation is
needed to better exploit the hardware and the connections
among qubits, which are limited on D-Wave’s architectures.
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Abstract—In this work we present an hybrid quantum-
classical algorithm that significantly improves the performance
of evolutionary algorithms on continuous optimization problems.
It makes use of a classical evolutionary strategy to optimize
shape and parameters of quantum circuits, which encode the
solutions into the corresponding distribution probability over the
computational basis states.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are a class of optimization
algorithms widely applied on problems that cannot be solved
through conventional techniques, because they avoid to com-
pute high cost information, like gradient, by taking advantage
of some bio-inspired stochastic operators.
There are three main reasons that let us think that quantum
computing might a fundamental role in improving that kind
of optimization methods:

1) Exponential advantage on space complexity:
2) Search can be moved on Hilbert spaces;
3) The stochasticity required is intrinsic in quantum phe-

nomena.
The first point is justified by the use of an amplitude encoding
technique which permits to represent an n-dimensional real
vector on a quantum circuit equipped with N = ⌈log n⌉ qubits.
In the second point we remark the possible benefit of moving
the search in a different vector space with a higher dimension.
The last point but not the least aims to get a good degree
of randomness from the quantum phenomena involved in the
algorithm itself.

II. A QUANTUM EVOLUTIONARY STRATEGY

The Quantum evolutionary strategy we are going to de-
scribe, the QES, deals with the search of the quantum circuit
that better approximates the real vector solution of a continu-
ous optimization problem. A classical optimization technique,
an evolutionary strategy II-E, will learn the best shape and
parameters of the circuit corresponding to the best solution
through the map presented in II-B.

A. Problem Statement

Considering a function f : A ⊆ Rn −→ R in a closed
bounded domain D ⊆ A, the problem is finding an optimal
solution x∗ ∈ A such that f(x∗) is the optimal value, such

as: the search for maximum (minimum) in maximization
(minimization) problems. The search will be made in a generic
n-dimensional box:

D = [a0, b0]× [a1, b1]× · · · × [an−1, bn−1]. (1)

where ai, bi ∈ R and i = 0, 1 . . . , n− 1.
The problem so defined will be encoded in quantum circuits
as described in the next section.

B. Encoding Technique

Given a N -qubit quantum circuit there is a quantum state
|ψ⟩ belonging to the Hilbert space HN . The vector |ψ⟩ has
2N complex coefficients, whose squared modulus form a
probability distribution P over the computational basis states
|x⟩ ∈ HN , which also correspond to the possible outcomes of
a measure. Mathematically, we have a discrete variable X with
values in all the possible combinations of the binary number
x, which represent the corresponding |x⟩ quantum states, and
the set of probability values pi = P (X = x) have to fulfil the
following properties:

2N−1∑

i=0

pi = 1 (2)

pi ∈ [0, 1] ⊂ R (3)

where i = 0, 1, . . . , 2N − 1 and correspond to the decimal
representation of the binary number x.
If we know the quantum circuit generating a quantum vector,
we have access at these probabilities by executing multiple
shots s; then each run is an event and the computational
basis states are the possible outcomes on which the frequency
probability distribution is built. Obviously, with the increase
of the number of shots the sampled distribution Ps tends to the
theoretical distribution P written in the squared modulus of
|ψ⟩. The running process to execute quantum circuits can be
carried out on real quantum devices or by means of classical
simulations.
In the proposed algorithm we respectively link the probability
pi to the component xi of the vectors x ∈ D. Then, we choose
a number of qubits for our quantum circuits equal to

N = ⌈log2(n)⌉+ g, (4)



where g ∈ N0 is an hyperparameter of the algorithm corre-
sponding to the number of garbage qubits that we need to
address generic continuous optimization problems.
Formally, N -qubit quantum circuits create probability distri-
butions in the space of the probability distribution on all the
|x⟩ states, but we only use the first n states; in the following
the space of the ”effective” probability distributions is denoted
as P . As a result there is no guarantee about the normalization
of the P ∈ P but a constraint is still remaining:

n∑

i=0

pi ≤ 1. (5)

At this stage, we can define the map

P ∈ P −→ x ∈ D ⊂ Rn

requiring the surjectivity to explore the entire search space.
The map L we have chosen works between the definition
domain of probability and the subspaces Di = [ai, bi],
L : pi ∈ [0, 1] −→ xi ∈ Di, acting as follows:

xi = L(pi) =
{
pi(bi − ai)n+ ai if pi =

[
0 , 1

n

]

bi otherwise
(6)

The final map is a non-invertible function but anyway sur-
jective. The resulting effect is that the genotypic space P , is
divided in an effective exploring zone, that is an n-dimensional
cube of length 1

n where the algorithm explores the search
space of the real problem, and its complement with respect
to D named blind zone, where the algorithm is not affected
by changing circuit parameters.

C. Quantum Circuit Initialization

The QES has a population composed of only one individual,
a quantum circuit with N qubits as described previously.
The first generation circuit is obtained through two sequential
actions:

1) apply an Hadamard gate on each qubit of the circuit;
2) add an RY (θ) gate to the quantum circuit, on a random

qubit with a random angle θ ∈ [0, 2π].

The first point changes the initial state of the quantum system
from |0 . . . 0⟩ to |+ · · ·+⟩, giving rise to an uniform prob-
ability distribution with pi = 1

2N
, which always fall inside

the effective search space, since 0 < pi <
1
n . We can drive

the starting position of the pi by adjusting the garbage qubits
g; in particular, pi dwindles with increasing g. A low value
for g determines a small distance between the starting point
in the genotypic search space and its bound. In principle, a
good starting point could be center point pi = 1

2n , however
it always depends on the problem. The second point has a
twofold scope: it breaks the unjustified symmetry of the first
candidate solution and it offers more possible actions to the
evolution process.

D. Quantum Circuit Evaluation

Give The fitness function of the evolutionary algorithm is
the function f that defines the optimization problem, it is
applied on the decoded solution x = L(p). Then, the fitness
function for our quantum evolutionary algorithm is simply the
function f or its opposite, depending on we respectively need
to solve maximization or minimization problems.
The evaluation process has a significant dependence on the
way the probability distribution is created. Qiskit provides
us all the necessary for running quantum circuits on both
classical simulators and real quantum processors trough the
IBM Quantum Provider API. In case of Statevector simula-
tions there are exact mathematical operations providing the
accurate quantum state vector, hence the exact probability
distribution P is obtained by the squared modulus of the
complex coefficients. Otherwise, the Qasm simulator or real
quantum circuit execution sample P by creating a frequency
distribution Ps, where each event is represented by a shot.
As the number of shots increases the sampled distribution Ps

tends to P . However we need to increase the number of shots
with the increasing of the dimension of the problem depending
on the precision needed for the solutions.

E. Evolutionary Strategy

Evolutionary Strategies (ESs) are an example of EAs char-
acterized by dealing with continuous candidate solutions. In
QES we make use of a (1 + λ)-ES equipped with only a
mutation strategy on quantum circuits playing the role of
individuals of the EA [1].
The evolution is initialized has described in II-C, and after that
λ quantum circuits are generated as copies of the single parent
circuit. Then each of the λ circuit composing the offspring
population is independently muted trough random choices
between four actions. Now, the offspring is evaluated through
the process described in II-D. If the best individual of the
offspring has a better fitness than the parent, it will replace
it; otherwise the parent survives. Then we have a mutation
strategy that guides the search in D through the parent circuit
evolution over the generations, approaching monotonically to
the global optimum.
The mutation process is a two-level strategy. The first step
consists in choosing one of the four possible actions to be
applied to the quantum circuit:

1) ADD: Sample unitary r ∈ G and parameter θ uniformly
and insert the corresponding gate at a random position.

2) DELETE: Delete gate at a random position from the
circuit.

3) SWAP: Combination of DELETE and ADD at the same
randomly chosen position.

4) MODIFY: Modify parameter θ of a randomly chosen
gate:

θNEW = θ +N (0, ∆θ)

where N (a, b) denotes a random number chosen with uniform
probability in [a, b], the angle ∆θ permits to regulate the
degree of the ”modify” action and pACT = [pA, pD, pS , pM ]



is a normalized list of probabilities for the corresponding
action to occur. The second step of the mutation strategy
consists in repeating, with a certain probability pR, the entire
mutation process at the end of each action. Therefore, we have
introduced several hyperparameters to be tuned: ∆θ, pACT and
pR.
An important remark is that the chosen universal set G permits
to explore the search space with both differentiable (angle
parameters) and not-differentiable operations (adding, deleting
and swapping discrete number of gates).

III. RESULTS

The experimental evaluation of the QES aims to compare
it to a classical genetic algorithm on a set of well-known
real-encoded optimization problems. The baseline considered
in the comparison is related to the genetic algorithms used
in [2]. A set of 5 functions has been considered, as well
as a set of 5 dimensionality of the problem for each of
them. Namely, the size of the problems considered are 25,
100, 250, 500, 1000. The goal is to analyze the behavior of
QES in optimizing both convex and non-convex functions
characterized by an high dimensionality. Then, the QES
has been tested on a heterogeneous sample of functions, on
bowl-shaped sphere model and on other non-convex functions
presenting peculiar features.
Note that the quantum results presented here come from
the quantum circuit simulation executed on local computers
through the statevector simulator on Qiskit.

IV. CONCLUSIONS

We presented an hybrid classical-quantum algorithm that
in principle can solve any continuous optimization problem
by learning shape and parameters of the quantum circuits in
which the solutions are encoded. Note that it differs from the
canonical Variational Quantum Circuits (VQCs) as the anstatz
is learnt by the algorithm itself [3].
The preliminary results are promising and some interesting
future directions have come up. An adaptation for NISQ
devices is readily feasible, for example by cancelling the
possibility to add more gate at the quantum circuits as soon
as the maximum depth is reached.
An important future direction to carry out is the investigation
on the quantum noise’s influence over performances. About
this point we expect two possible scenario: neither it will give
the amount of stochasticity that our algorithm needs or the
noise is too much that makes lost the information encoded in
the circuits and our algorithm will become only a complicated
random search. A deeper understanding on the ... is also
required for a more theoretical justification of the results.
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Abstract—The regulation of traffic lights in a signalised urban
network requires optimizing objective functions that represent
performance indicators of one or more intersections (such as
delay or queue length). In this scenario, evolutionary algorithms
are adopted to find suitable approximate solutions, in cases
when no deterministic algorithm for finding the exact solution is
known. This paper attempts to further improve the performance
of evolutionary approaches by using a hybrid quantum-classical
genetic algorithm to find the optimal configuration of the green
signal timing regulating the traffic flow across two interacting
junctions. The adopted algorithm, run on IBM quantum com-
puter simulators, is shown to be suitable for the optimization
problem at hand. Indeed, the experimental results highlight some
of the strengths of the proposed technique with respect to the
purely evolutionary approach, and encourage the application
of this approach to more complex and close-to-real application
scenarios.

Index Terms—Genetic Algorithms, Optimisation, Quantum
Computing, Signal Setting

I. INTRODUCTION

The optimisation of a transportation system in terms of ca-
pacity and sustainability is a major and continuous engineering
challenge. At urban level, most strategies involve the control
of road junction networks. Traffic lights are one of the most
common ways to achieve such control. The design of control
variables can be formulated as an optimisation problem, often
named Network Signal Setting Design (NSSD). Such problem
often involves a large number of decision variables, a series
of constraints to be satisfied and, in many cases, more than
one objective function to be optimised. It shows therefore a
relevant complexity which prevents the search of the exact
solution, especially in those cases where a given urban network

needs to be regulated repeatedly for real time traffic control.
Meta-heuristic algorithms are generally adopted since they
allow for the approximation of the optimal solution of difficult
problems. Genetic Algorithms (GAs) are one of the mainly
used meta-heuristics thanks to their effectiveness and versatil-
ity. In a typical GA workflow a random population of solutions
is generated; then, the population evolves through an itera-
tive process involving the action of three genetic operators,
named selection, crossover and mutation, whose purpose is to
explore the solution space and gradually shift towards better
solutions across the iterations. Different characterisations and
implementations of such operators can heavily influence the
performance of the algorithm, so they are usually tailored
for the problem at hand. There has recently been a growing
interest in combining techniques of computational intelligence,
such as GAs, with quantum computing, a disruptive paradigm
of computation that harnesses the quantum properties of matter
(such as superposition and entanglement) to achieve a compu-
tational advantage with respect to some specific tasks. Besides
computational power, from a GAs perspective the transition
to a hybrid quantum-classical framework opens up innovative
possibilities for the encoding of chromosome features and
the implementation of genetic operators. In this regard, the
quantum paradigm has already proven to be a valuable toolbox
to take into consideration. Recently, a so-called Quantum
Mating Operator (QMO) has been introduced and its use
in a genetic optimization process has produced a significant
improvement over algorithms equipped with conventional evo-
lutionary operators [1]. In this work, a QMO-based GA has
been used to minimize an objective function describing the



total deterministic delay in a network, which is one of the most
important performance indicators of a signalised junction with
a direct impact on the waiting time of vehicles. The results
are very promising and show that quantum-classical hybrid
genetic optimization represents a high-potential approach for
solving the NSSD problem and, in general, for optimization in
transport systems, especially when quantum processors prove
sufficiently mature for intensive use in real-world scenarios.

II. NETWORK SIGNAL SETTING DESIGN

A NSSD instance can be seen as an optimization problem
aimed at finding the optimal configuration of a set of control
variables to improve the performance of a road network with
fixed layout. The control variables usually involve the green
timings, which are the durations of the green signals for the
different approaches of a given network (i.e., the number of
incoming lanes receiving identical signals over time). More
precisely, one usually assigns a duration to each stage: a
stage is a time interval during which all the signals remain
unchanged. In addition to the timing, green signals need to
be scheduled. The scheduling regulating each single junction
is commonly formalised by means of a stage matrix ∆. The
number of rows of ∆ is the number of approaches of the
junction, while the number of columns corresponds to the
number of stages. The generic entry δij ∈ ∆ is equal to 1 if
approach i receives a green signal during stage j, otherwise it
is 0. Stages are repeated cyclically and the duration of a cycle
is given by the sum of the durations of the stages. The cycle
length is usually common to all the junctions in a network,
however it is possible to introduce time offsets between cycles
of different junctions. In such cases, offsets become additional
decision variables to take into account. The optimisation can
involve one or more objective functions, namely a number of
performance indicators that depend on the control variables
more or less directly.

III. CASE STUDY

The network consists of an arterial joining two signalised
junctions, namely an upstream junction Jl and a downstream
junction Jh, as shown in Fig. 1. The distance d between the
junctions is 300 m. Jl is an isolated junction, while Jh is a
“T” junction characterized as in [2], except in our case two
approaches out of five (k = 1 and k = 2) are interacting
and the remaining three are isolated. This means that the
arrival flows qk (number of vehicles arriving at approach k
per unit time) are fixed for k ∈ {3, 4, 5}, but vary in time
for k ∈ {1, 2} due to the interaction with the upstream node.
Therefore, these time-dependent flows must be computed by
performing a traffic simulation. The arrival flows qk and the
saturation flows sk (maximum number of vehicles per unit
time which coming from approach k and crossing the junction
during a green signal in presence of a queue), are reported in
Table I, which can be found in [13]. All of the approaches of
both the junctions are signalised. The stage matrices describing
the green scheduling can be found in [13].

The traffic flow simulation across the network of Fig. 1
reproduces the dynamic of the traffic flow for a total duration
T = 15 min. The interval T is discretized in sub-intervals of
duration ∆τ = 1 s. For every i-th sub-interval, different traffic
profiles are computed according to a given traffic flow model.
The model chosen for this study is based on Robertson’s
approach (1969). The first traffic profile is qI ; it enters the
arterial from Jl and is set to the constant value of 1200 pcu/h.
The constant stream speed is v = 9 m/s. The dispersion
profile qSk reaching the stop line at the k-th approach of the
downstream junction at time i+∆i is given by the following
recursive expression [7]:

qSk(i+∆i) = FqIk(i) + (1− F )qSk(i+∆i− 1) (1)

where:

∆i = ⌊0.5 + 0.8tlh
∆τ

⌋;

F =
1

1 + 0.4tlh
;

tlh =
d

v
= 33.3 s.

(2)

The profile qUk outgoing Jh from the k-th approach is given
by: qUk = 0 in case of red signal at approach k; qUk = sk in
case of green signal at approach k and qSk > sk; qUk = qSk

otherwise (sk is the saturation flow of approach k). Once the
profiles qS and qU have been computed for each i-th sub-
interval in T , it is possible to calculate the total deterministic
delay D built up during T (at given Jh approach). Such delay
represents the objective function to minimize and is given by:

Dk(T ) =

T/∆τ∑

i=1

i∑

j=1

[qSk(j)− qUk(j)]∆τ
2. (3)

The decision variables are the following: t1, t2 and t3, i.e.
the durations (in seconds) of the stages of Jl; t4, t5 and t6, i.e.
the durations (in seconds) of the stages of Jh; ϕ, i.e. the offset
(in seconds) between the cycles of Jl and Jh. The duration of
the cycle is common to both junctions and is given by C = 64
s, as prescribed in [2]. This implies that, for each junction,
only two ti out of three are independent. Therefore, the actual
optimisation variables of our problem are reduced to t1, t2, t4,

Fig. 1. Arterial layout.



t5, and ϕ. Not every configuration of the optimisation variables
can be accepted as a feasible solution for the problem, because
of a number of constraints involving the effective green gk and
the capacity factor CFk functions. Further information about
such functions and the corresponding constraints can be found
in [13].

IV. EXPERIMENTS AND RESULTS

We choose a set of GAs for a performance comparison. In
particular, our proposal based on a hybrid genetic algorithm is
compared with two different classical GAs. In the following,
the classical GAs will be referred to as GA1 and GA2, while
the QMO-based GA will be denoted GA3, where: GA1 is
a classical GA using a single point crossover operator, a bit
flip mutation operator and a tournament selection operator;
GA2 is similar to GA1, except a two-point crossover is
adopted; GA3 is a quantum-classical GA where crossover
and mutation are implemented via QMO, and a tournament
selection is used. The performance will be evaluated, upon
hyperparameter tuning, by considering the average fitness
values achieved by each GAi through 30 independent runs.
In each individual GA run, the initial population is made of
10 random chromosomes. One chromosome contains 5 genes,
corresponding to the aforementioned optimisation variables,
namely t1, t2, t4, t5, and ϕ. Each gene is an integer number
n such that 0 < n < C − 1, expressed in reflected binary
representation. The delay function (3) is used as a fitness
function to minimise and all the GAs use the same termination
condition, i.e., the exceeding of a maximum number of fitness
evaluations, set to 500. Every time it is necessary to evaluate
the fitness function of a given chromosome throughout the
evolutionary computation, the traffic simulation comes into
play: since the fitness is given by the delay function (3), to
obtain its value we need to compute the traffic profiles defined
above, which ultimately depend on the genes t1, t2, t4, t5, and
ϕ, and can only be obtained by running a traffic simulation.

The quantum part of the computation is performed through
IBM’s Qiskit development framework. In particular, GA3 is
executed twice: the first time we use Qiskit’s qasm simulator,
a local simulator of an ideal quantum computer; the second
time we use a different simulator reproducing the behaviour of
the ibm nairobi device, i.e. an actual 7-qubit quantum proces-
sor, whose behaviour is likely to be disturbed by environmental
noise. The results in Fig. 2 show no remarkable difference
among the performances of GA1, GA2 and GA3 in the case of
ideal quantum simulation. The case of GA3 executed by a non-
ideal simulator (last box plot of Fig. 2), instead, shows better
performance both in terms of fitness values and dispersion of
values. In conclusion, a comparison of QMO’s performance
with two other classical sets of genetic operators shows an
advantage of the quantum operator in terms of stability and
constraints satisfiability while exploring the space of possible
solutions. Furthermore, the results suggest the suitability of
this hybrid quantum-classical approach for the problem at
hand and encourage its application to more challenging multi-
criteria optimisation problems.

Fig. 2. Box plots showing mean and median values of the fitness function
(i.e., the delay) over 30 executions.
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Abstract—Physics-Informed Neural Networks (PINNs) have
emerged as a powerful tool in scientific computing, encompass-
ing tasks like solving Partial Differential Equations and data
assimilation. This work investigates the design of PINNs using
the Continuous Variable (CV) Quantum Processing Unit. We
develop a straightforward Quantum PINN framework using a
CV quantum computing paradigm to solve the one-dimensional
Poisson problem. We study the impact of different optimizers,
showing that the optimizer exploration of the training landscape
in quantum PINNs is less effective than classical PINNs, with a
basic Stochastic Gradient Descent (SGD) optimizer outperforming
adaptive and high-order optimizers.

Index Terms—Quantum Scientific Machine Learning

I. INTRODUCTION

This paper discusses the concept of Quantum Physics-
Informed Neural Networks (PINNs) and explores the potential
of using Continuous Variable (CV) quantum computers for
deploying PINNs. Classical PINNs are neural networks used
to solve Partial Differential Equations (PDEs) in scientific
computing [1]. PINNs consist of two interconnected neural
networks: a surrogate network and a residual network. The
surrogate network approximates the solution of the PDE at a
given point, while the residual network calculates the error of
the approximation [2]. The main strength is that PINNs lever-
age automatic differentiation to perform differential operator
calculations without the need for discretization or meshes. This
work investigates the potential of using Quantum Processing
Units (QPUs) and associated software for deploying PINNs on
CV quantum computers. Quantum PINNs employ variational
quantum circuits and leverage CV quantum computing, which
uses physical observables and is well-suited for approximating
continuous functions [3]–[5].

II. CONTINUOUS VARIABLE QUANTUM COMPUTING

The CV quantum computing approach is founded on the
concept of a qumode, which serves as the fundamental unit
of information in CV quantum computing. We represent the
qumode, denoted as |ψ⟩, using a basis expansion of quantum
states:|ψ⟩ =

∫
ψ(x) |x⟩ dx, where the states correspond to

eigenstates of the x̂ quadrature. These eigenstates are expressed
as x̂ |x⟩ = x |x⟩, with x representing a real-valued eigenvalue.

While qubit-based quantum computing employs discrete
coefficients, the CV-based approach utilizes a continuous
spectrum of coefficients. CV quantum operators include the
position (x̂) and momentum (p̂) g. The position operator is

defined as x̂ =
∫∞
−∞ x |x⟩ ⟨x| dx where the vectors |x⟩ are

orthogonal.
Similar to the established qubit-based formulation, CV

quantum computation can be expressed using low-level gates
that can be realized, for example, through photonics devices [6].
A CV quantum program can be viewed as a sequence of gates
acting on one or more qumodes. To develop CV quantum
neural networks and CV quantum PINNs, four fundamental
Gaussian gates operating on qumodes are required. These four
linear gates are as follows:

• Displacement Gate - D(α):
[
x
p

]
→

[
x+ ℜ(α)
p+ ℑ(α)

]
. This

operator corresponds to a phase space shift by displacing
a complex number α ∈ C.

• Rotation Gate - R(ϕ):
[
x
p

]
→

[
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

] [
x
p

]
.

This operator corresponds to a rotation of the phase space
by an angle ϕ ∈ [0, 2π].

• Squeezing Gate - S(r):
[
x
p

]
→

[
e−r 0
0 er

] [
x
p

]
. This

operation corresponds to a scaling operation in the phase
space with a scaling factor r ∈ C.

• Beam-splitter Gate - BS(θ):




x1
x2
p1
p2


 →




cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 cos(θ) − sin(θ)
0 0 sin(θ) cos(θ)







x1
x2
p1
p2


. This

operation is similar to a rotation between two qumodes
by an angle θ ∈ [0, 2π].

Apart from these four fundamental Gaussian gates, there
are also non-Gaussian gates, such as the cubic and Kerr gates.
These non-Gaussian gates introduce non-linearity, similar to
the activation functions in classical neural networks. More
importantly, when combined with Gaussian gates in a sequence
of quantum computing units, non-Gaussian gates provide
universality to the CV quantum circuit, ensuring the ability to
generate any CV state. In this study, we employ the Kerr gate
that is typically represented as K(κ), where κ ∈ R serves as
the quantum gate parameter.

Lastly, in quantum computing, the outcome of an operation is
determined through a measurement. In this study, the measured
result is used to evaluate the expected value of the quadrature



operator x̂, given by:⟨ψx| x̂ |ψx⟩ . In a simple regression task,
where the goal is to approximate a function f(x), a quantum
neural network is trained to estimate ⟨ψx| x̂ |ψx⟩ = f(x) for all
values of x. This is achieved by finding optimal gate parameters
(α, ϕ, etc.) that satisfy the equation through an optimization
process.

III. A CONTINUOUS-VARIABLE QUANTUM PINN

Quantum Physics-Informed Neural Networks (Quantum
PINNs) build upon the foundation of CV quantum neural
networks, as demonstrated in previous studies [5], [7]. Fig. 1
provides an overview of the workflow and resource utilization
involved in employing a quantum PINN for solving a 1D Pois-
son equation with associated boundary conditions (∇2Φ̃(x) =
b(x)). The Poisson equation serves as a fundamental governing
equation in scientific computing, describing various phenomena
such as electrostatic and gravitational forces.
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Fig. 1: A diagram representing the workflow in a quantum
PINN.

In the initial step of the quantum PINN process, the
collocation point is encoded as a displacement in the vacuum
state. This encoding entails a real-valued displacement without
any displacement or squeezing in the phase space. Other
encoding strategies are also possible. A notable advantage
of employing CV quantum neural networks is the convenience
of input encoding into the quantum neural network without
requiring normalization. Following the initial displacement
encoding, the qumode proceeds into the quantum PINN, which
consists of two interconnected neural networks:
• Quantum Surrogate Neural Network: The quantum neural

network surrogate is a CV quantum neural network
described in Ref. [8]. It constitutes a parameterized
quantum circuit that takes the collocation point coordinate
(x) as input, encoded as a displacement or a rotation
in the vacuum state. The output of this network is the
approximate solution (Φ̃(x)), represented by the expected
value of the quadrature operator.

• Residual Neural Network: Quantum PINNs operate in
a matrix-free manner, eliminating the need to store and
encode the problem matrix and source vector. Instead,
the residual network encodes the governing equations.
The residual network is not trained, meaning its weights
are not updated. Its primary function is to provide the

quantum surrogate neural network with a loss function,
specifically the residual function for inner points (ip)
within the domain |r|ip = |∇2Φ̃(x)− b(x)|. Furthermore,
in addition to satisfying the governing equation for inner
points, the collocation points on the boundaries must fulfill
the problem’s boundary conditions.

The fundamental component of a quantum neural network
is the quantum neural network unit, also known as a quantum
network layer in the literature, which shares similarities with
the classical neural network unit. Fig. 2 illustrates an example
of the quantum neural unit elements. The first three components
of the quantum neural unit consist of an initial interferometer,
a squeezing gate, and a subsequent interferometer. It has been
demonstrated in Ref. [8] that the combined effect of these
operations is analogous to multiplying the phase space vector
by the neural network weights W , which are the parameters
of the interferometers and squeezing gates. Similar to classical
neural networks, a displacement gate emulates the addition of
a bias b. Lastly, a Kerr gate (or cubic gate) introduces a non-
linearity akin to the activation function σ in classical neural
networks.

By stacking multiple quantum neural units in a sequence,
we can construct a quantum neural network. It is important to
note that, for a single qumode, each gate can be controlled by
a total of seven gate parameters (α, ϕ, r, θ, and κ), which can
either be real-valued (ϕ, θ, and κ) or complex numbers (α, r).
The complex-valued parameters can be expressed using two
real numbers in Cartesian form (with real and imaginary parts)
or polar form (with amplitude and phase). The training of
quantum neural networks aims to determine the parameterized
quantum circuit values (α, ϕ, r, θ, and κ) for different qumodes
and quantum neural units, with the objective of minimizing the
PINN cost function, which corresponds to the PDE residual.
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Fig. 2: An example of CV quantum neural unit.

IV. RESULTS

In this work, we employ the Python Strawberryfields

CV quantum simulator [9], [10] along with a set of Python
modules to facilitate efficient vector calculations on the CPU
and utilize additional optimizers not present in the Tensor-
Flow/Keras framework [11]. Our implementation relies on
Python version 3.10.4, as well as the NumPy (1.22.4) and SciPy
(1.8.1) modules. The experiments are conducted using the quan-
tum computer simulator provided by the Strawberryfields

framework, specifically version 0.22.0. Throughout all sim-
ulations, a single quantum mode is utilized, and a cutoff



dimension of 125 is employed for the Fock basis. In this study,
we evaluate the effectiveness of several optimizers including
Stochastic Gradient Descent, Adam, Simultaneous Perturbation
Stochastic Approximation (SPSA), and the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B) optimizers.
An implementation of a CV Quantum PINN is available on
GitHub 1.

To simplify the evaluation of the quantum PINN, we focus
on a one-dimensional Poisson problem with fixed Dirichlet
boundary conditions, given by d2Φ/dx2 = b(x). For testing
purposes, we select two types of sources (represented by the b
term in the Poisson equation) and two different domain sizes:
(i) Quadratic: b(x) = x(x − 1), [0, 1], Φ(0) = 0, Φ(1) = 0.
In this case, the solution is a parabola with the first derivative
equal to zero at the domain’s center, x = 0.5. (ii) Sinusoidal:
b(x) = sin(2x), [0, 2π], Φ(0) = 0, Φ(2π) = 0. This test case
is more challenging as the solution has four points where the
first derivative is zero. Fig. 3 shows the cost function value
together with the final error for the different problems using
different optimizers and a quantum PINN with four units. By
analyzing the cost function value and final error, it is clear
that the SGD optimizer outperforms the adaptive and SPSA
optimizers. In general, we find that adaptive optimizers, such
as Adam, tend to converge to local minima in the training
landscape without exiting. A noisier optimizer, such as SGD,
can escape the local minima and better explore the optimization
landscape.
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Fig. 3: Cost function value evolution and final errors for
different stochastic optimizers.

V. CONCLUSION

This work focused on the development of Physics-Informed
Neural Networks (PINNs) for solving differential equations
with a CV quantum computing approach. Quantum PINN

1https://github.com/smarkidis/Quantum-Physics-Informed-Neural-Network

solvers are variational quantum circuit solvers, augmented with
a classical residual network that serves as a cost function for
the optimization process. We demonstrated that a CV quantum
neural network can serve as a surrogate for approximating the
solution to a PDE to a certain extent, as evidenced by our
tests on the one-dimensional Poisson equation with quadratic
and sinusoidal source terms. The choice of optimizer had
the most significant impact on the accuracy of the PINN
solver, with SGD outperforming adaptive optimizers in terms
of accuracy and stability. A key area for further development
of quantum PINNs is to address their current limitations in
terms of accuracy. In our experiments, it was challenging to
reduce the error below a certain threshold or achieve faster
convergence within a finite number of iterations. This difficulty
is likely related to the barren plateau problem, which affects
hybrid quantum-classical algorithms involving an optimization
step [12]. In fact, the optimizer is entrapped on a barren plateau
within the training landscape, with an exponentially small
probability of escaping it. The barren plateau problem is rooted
in the geometry of parameterized quantum circuits (in our case,
the quantum surrogate neural network) and training landscapes
associated with hybrid classical-quantum algorithms. Potential
strategies to mitigate this problem include using different
quantum network architectures, employing skip connections,
applying dropout techniques, using a structured initial guess
similar to quantum simulations, and pre-training.
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Abstract—We design a method to optimize classical
binary neural networks (BNNs) with a hybrid classical-
quantum optimization scheme. This approach allows
to optimize binary weights, biases and model hyperpa-
rameters in the same loop, effectively training different
classical BNNs in quantum superposition. We perform
large-scale simulations via sampling a quantum circuit
described as a Matrix Product State. By repeatedly
measuring the final quantum state, one can obtain
many different optimal BNNs.

Index Terms—Binary neural networks, Variational
Quantum Algorithms, Tensor Networks, Matrix Prod-
uct States, Quantum circuits

I. Introduction

Binary neural networks (BNNs) are considered a power-
ful paradigm in the field of artificial intelligence and ma-
chine learning [1], [2]. They have gained significant atten-
tion because of their potential ability to address some key
challenges. Instead of traditional neural networks, BNNs
represent and process data using only binary variables ±1,
thus greatly reducing memory and computational cost.
This improvement can be crucial for resource-constrained
devices, such as embedded systems. Other benefits arise
from energy efficiency and faster inference. However, the
discrete nature of the neural weights and biases makes it
difficult to apply traditional gradient-based optimization
methods.

A possible way to overcome such limitations relies on
the use of Hybrid Classical-Quantum Optimization Tech-
niques [3]–[5]. Such methods are considered one of the
main practical applications of quantum devices in the cur-
rent Noisy Intermediate-Scale Quantum (NISQ) era. They
rely on an appropriate parameterized quantum circuit,
whose parameters are optimized in order to minimize a
suitable loss function (corresponding to a the expectation
value of a given hamiltonian). The optimal parameters are

learned in a loop with a classical computer, which evaluate
the parameter updates at each step.

The binary nature of BNNs parameters enables a
straightforward embedding of the system into any qubits
based quantum platform [3]–[5]. Interestingly, in such
a framework one can also optimize some (binary) hy-
perparameters controlling the architecture itself or the ac-
tivation functions [5]. This fact can represent a huge break-
through compared with standard classical techniques. In-
deed, as a matter of fact, the quantum superposition
principle allows the optimization of many neural networks
at once.

II. Model and methods
We consider a neural network having binary weights

and biases wi, bi ∈ ±1. Our model includes also ad-
ditional binary variables representing a set of relevant
hyperparameters, as for instance an architectural choice
or the selection of the activation function (see Figure 1).
The vector of all binary parameters is dubbed σσσ. In a
supervised learning framework, the learning of a task is
obtained by optimizing a suitable loss function Lcl over
the parameters σσσ. Given a data-set D = {(xxx(µ), yyy(µ))}N

µ=1,
consisting of a series of inputs xxx and corresponding outputs
yyy, the loss is expressed as

Lcl(σσσ) = 1
N

N∑

µ=1
ℓ
(

BNN(xxx(µ);σσσ), yyy(µ)) . (1)

Here, BNN(xxx;σσσ) is the function returning the output of
the binary neural network for an input xxx and a fixed
set of (hyper)parameters σσσ. Notice that xxx(µ), yyy(µ) are not
constrained to be binary numbers. The energy landscape
defined by Lcl(σσσ) is highly non-convex.

To encode the problem in a quantum system, we maps
the classical binary variables σi ∈ ±1 into Pauli operators



σ̂z
i acting on a set of qubits (or spin-1/2 variables). Hence,

we regard the initial cost function as a quantum Hamilto-
nian being diagonal in the standard computational basis
of quantum computation

Lcl(σ1, . . . , σN ) → Ĥ(σ̂z
1 , . . . , σ̂

z
N ) , (2)

where N is the total number of (hyper)parameters and
correspondingly the total number of qubits. At this point,
to learn means finding the ground-state of Ĥ, namely
minimizing the expectation value ⟨ψ|Ĥ|ψ⟩ over the nor-
malized wave functions |ψ⟩. Notice that, since the |ψ⟩
can be an arbitrary complex superposition of classical
binary strings, the optimizer can explore at the same
time many possible parameter configurations, or even
different neural architectures and activation functions. To
perform the quantum optimization, we consider a subset
of states, which are obtained from the trivial initial state1

|000⟩ = |0⟩⊗N by acting with a parameterized quantum
circuit, i.e. |ψθθθ⟩ = Û(θθθ) |000⟩, θθθ being the set of parameters of
the circuit and Û(θθθ) the corresponding unitary operator.
Our quantum loss function is therefore

L(θθθ) = ⟨ψθθθ|Ĥ|ψθθθ⟩ =
∑

σσσ

Lcl(σσσ) pθθθ(σσσ) , (3)

where pθθθ(σσσ) = | ⟨σσσ|ψθθθ⟩ |2 is the probability to observe the
system in the classical string σσσ after measuring σ̂z

i . We
restrict ourselves to the simple hardware efficient quantum
circuit, which consists of layers of single qubit rotations
alternated by entangling layers of CNOTs (see Figure 1).
The depth of the circuit is dubbed P . In an experimental
setup, L(θθθ) can be approximated by taking Ns samples
(snapshots) from the wave function |ψθθθ⟩ and using the
unbiased estimator

L̃(θθθ) = 1
Ns

Ns∑

s=1
Lcl(σσσs) . (4)

To investigate the performance of this approach, we
consider the MNIST data set, so that from now on
the vector xxx will represent the input image and yyy the
corresponding (one-hot encoded) label. In some cases, we
considered a scaled-down version of the data set in which
the original pictures (of size 28 × 28) were compressed
to L × L pixels. We choose the standard cross-entropy
loss function. To optimize the parameters θθθ we use the
Quantum Natural Simultaneous Perturbation Stochastic
Approximation (QN-SPSA) optimizer [6]. This approach
consists in a Natural Gradient Descent, where both the
loss function gradient and the metric tensor are replaced
with stochastic estimators obtained by sampling random
directions in the parameter space. Interestingly, the
computational cost of QN-SPSA is independent of the
number of parameters, thus being extremely advantageous

1We use the standard convention in quantum computation, iden-
tifying the two eigenstates of σ̂z , up | ↑⟩ and down | ↓⟩, with the
computational basis states |0⟩ and |1⟩ respectively.

Fig. 1. a) The problem of optimizing a BNN based on a given
dataset {(xxx(µ), yyy(µ))}N

µ=1 is considered. A quantum circuit depending
on a set of parameters θθθ is trained to minimize the loss function
L(θθθ). After the training, the readouts of the qubit measurements are
interpreted as parameters or hyperparameters of the BNN. b) We
consider two possible scenarios. In the first, the circuit is implemented
on a quantum device. In the second, the circuit is simulated on a
classical computer with MPS techniques. The maximum MPS bond-
dimension χ is regarded as an effective regularization parameters for
the optimization.

in the case of a circuit with a large number of parameters.

A. Matrix Product States implementation
Matrix Product States (MPS) provide a compact and

flexible representation of quantum states, enabling efficient
simulations [7], [8]. Recently, they have been shown to be
very useful also in the context of Machine Learning [9]–
[11] and hybrid quantum-classical algorithms [12]. For
the present work, we use MPS to implement an efficient
classical simulator of the outlined quantum circuit Û(θθθ).

A crucial parameter of an MPS is its bond-dimension
(usually dubbed as χ), namely the size of the matrices
involved in the wave function representation [7], [8].
The bond-dimension determines the accuracy and
computational efficiency of MPS calculations. From a
physical point of view, setting a maximum bond-dimension
corresponds to having a cut-off on the maximum amount
of entanglement between the quantum constituents of
the system which can be encoded by the ansatz [7]. In
general, to simulate a quantum circuit of depth P with
full accuracy, one has to scale χ as ∼ exp(P ). However, in
the cases in which the entanglement growth is bounded
one can use a reasonable value of χ still obtaining a good
fidelity. For our purpose, here we investigate also the
case in which the maximum bond-dimension χ is set to a
small value, thus obtaining a very rough approximation
of the “true” variational quantum state |ψθθθ⟩ = Û(θθθ) |000⟩.
This approach is meaningful in the perspective of creating
a (quantum-inspired) classical optimization algorithm,
i.e. when one is not interested in having a perfect
emulator of the quantum circuit but rather in obtaining
an effective optimization tool. Similar approaches have
been recently explored in several works [3], [9], [13], [14].
In a sense, we interpret the bond-dimension χ as a sort
of “regularization” parameter of the simulation, which



interpolates the true quantum algorithm, for χ ∼ exp(P ),
with a sort of fictitious classical optimization machine,
for χ ≪ exp(P ) (see Figure 1 b)).

Finally, let us mention that one can achieve an unbiased
sampling of the MPS wave function with a computation
cost of O(χ2NsN), where Ns is the number of samples
(snapshots) and N the number of qubits [15], [16]. This
sampling is particularly useful for our model since, con-
trary to the case of a single layer network [3], for deep
architectures one is never able to recast the loss function
as a Matrix Product Operator (MPO) and consequently
to compute the expectation value ⟨ψθθθ|Ĥ|ψθθθ⟩ with the
efficiency guaranteed by the Tensor Network formalism [3].
Indeed, here we use the sampling to approximate L(θθθ)
through the estimator in Eq. 4 (regardless of the complex-
ity of the loss function). Notice that, unlike standard neu-
ral networks methods, here the optimization is performed
over the entire data set.

III. Results
We report some preliminary findings of our simulations.

New results will be obtained soon and discussed in the new
version of the draft.

Figure 2 represents the convergence of the optimization
loop for the reduced MNIST dataset with L = 8 and 0/1
images only. We use a circuit of depth P = 2 trained to
optimize a single-layer logistic classifier. The total number
of network parameters and correspondingly of qubits is
N = 65. At this stage, we fix a large values of the MPS
bond-dimension, in order to obtain a full accuracy in
the quantum circuit simulator. Afterwards, we run the
QN-SPSA algorithm for 1500 iteration steps.

At each step of the optimization, we estimate the cross
entropy loss with a set of Ns = 1500 samples, and we
store the best 1, 5, 10% of these classical configurations
(corresponding to the classical BNNs with lowest cross
entropy loss Lcl(σσσs)). Indeed, obtaining a sizable fraction
of the shots with a small value of the loss function
is already a successful result for the optimization.
Indeed, these BNNs are expected to yield high test-set
classification accuracy, and this may even lead to an early-
stop of the optimization loop. This is confirmed in Fig. 2:
here, we plot the test-set accuracy during the training,
computed at each iteration as an average over the whole
sample, or only over these subsets of “best shots”. After
few iterations, i.e. much before the cross entropy reaches
convergence (inset), the best sampled configurations
already yield a nearly-optimal test accuracy.

We find L̃(θθθ∗) ≃ 0.14 ± 0.08 for the optimal circuit
parameters θθθ∗. By extracting Ns = 104 shots from the final
state |ψ(θθθ∗)⟩ we observe that ≈ 62% of them correspond to
a test accuracy larger than 0.9 (90% of correctly classified
images) and ≈ 2.4% of them correspond to a test accuracy
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Fig. 2. The training of a circuit op depth P = 2 learning a
classification network for the 8 × 8 MNIST dataset. We plot the test
set accuracy of the 1, 5, 10% best shots and the loss function L̃(θθθ) at
each step.

larger than 0.95 (95% of correctly classified images). In-
terestingly, the circuit does not just learn a single optimal
setting of the network parameters, but rather a batch
of solutions, reminiscent of Bayesian approaches. Indeed,
even by measuring the final optimal state Ns = 104 times,
all sampled BNNs are different. More quantitatively, we
evaluate the mutual Hamming distance between optimal
configurations. We find an average Hamming distance of
≃ 22 for the samples with test accuracy larger than 0.9 and
≃ 18 for the samples with test accuracy larger than 0.95. In
conclusion, the optimal quantum state does not collapse on
one or few classical BNNs, and one may interpret its square
modulus as a probability distribution that concentrates on
optimal BNNs architectures. Remarkably, for sufficiently
large quantum circuits, this distribution would be classi-
cally intractable.
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Approximate Optimization Algorithm performance with low
entanglement and high circuit depth, 2022.

[14] E. Miles Stoudenmire and David J. Schwab. Supervised Learn-
ing with Quantum-Inspired Tensor Networks, 2017.

[15] E M Stoudenmire and Steven R White. Minimally entangled
typical thermal state algorithms. New Journal of Physics,
12(5):055026, may 2010.

[16] Andrew J. Ferris and Guifre Vidal. Perfect sampling with
unitary tensor networks. Phys. Rev. B, 85:165146, Apr 2012.



Compiling Quantum Circuits
for the Graph Coloring Problem*

Angelo Oddi, Riccardo Rasconi
ISTC - Instituto di Scienze e Tecnologie della Cognizione

CNR - Consiglio Nazionale delle Ricerche
Roma, Italy

{angelo.oddi, riccardo.rasconi}@istc.cnr.it

Marco Baioletti
Dipartimento di Matematica e Informatica
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Abstract—Current quantum computing technologies limit the
qubit interaction distance allowing the execution of gates between
adjacent qubits only. This has opened the way to the exploration
of possible techniques aimed at guaranteeing nearest-neighbor
(NN) compliance in any quantum circuit through the addition
of a number of so-called swap gates between adjacent qubits.
In addition, technological limitations (decoherence effect) impose
that the overall duration (i.e., depth) of the quantum circuit
realization be minimized. In this work we investigate the appli-
cation of an upgraded version of the greedy randomized search
(GRS) technique originally introduced in the literature that
synthesises NN-compliant quantum circuits realizations, starting
from a set of benchmark instances of different size belonging
to the Quantum Approximate Optimization Algorithm (QAOA)
class tailored for the Graph Coloring problem. We propose
a comparison between the presented method and the SABRE
compiler, one of the best-performing compilation procedures
present in Qiskit, an open-source SDK for quantum development,
both from the CPU efficiency and from the solution quality
standpoint.

Index Terms—randomized search, quantum circuit compila-
tion, planning, scheduling, optimization

I. INTRODUCTION

Quantum algorithms process information represented as
qubits, the basic unit of quantum information, and quantum
operations (called gates) are the building blocks of quantum
algorithms. In order to be run on real quantum computing
hardware, quantum algorithms must be compiled into a set of
elementary machine instructions (or gates).

Since the currently available Noisy Intermediate-Scale
Quantum (NISQ) devices [2] suffer a number of technological
problems such as noise and decoherence, it is important that
the process that carries out the quantum computation be
somehow adapted to the physical limitations of the quantum
hardware of interest, by means of a proper compilation.
Usually, NISQ algorithms require error mitigation techniques
to recover useful data, which however make use of precious
qubits to be implemented. Thus, the creation of a com-
puter with tens of thousands of qubits and sufficient error

*This work is a summary of the published paper [1], which reports part
of the work developed during the joint ARIADNA study Meta-Heuristic
Algorithms for the Quantum Circuit Compilation Problem with the Advanced
Concepts Team (ACT) of the European Space Agency (ESA), ESA Contract
No. 4000134995/21/NL/GLC/my.

correction capabilities would eventually end the NISQ era.
These “beyond-NISQ” devices would be able, for example,
to implement Shor’s algorithm, for very large numbers, and
break RSA encryption. Until that point however, the need
to produce circuits runnable in the current (or near-future)
quantum architectures in a reasonably reliable manner (i.e.,
counting on noise minimization techniques rather than on
error-correcting techniques) will stand. Hence, the need to
provide quantum circuit compilation procedures that minimize
the effects of decoherence by minimizing the circuit’s depth.

In this work, we investigate the performance of an upgraded
version of the greedy randomized search (GRS) technique [3]–
[5] originally introduced in [6] applied to the problem of
compiling quantum circuits to emerging quantum hardware.
In particular, we experiment on a set of benchmark instances
belonging to the Quantum Alternate Operator Ansatz (QAOA)
class [7] tailored for the Graph Coloring problem, and devised
to be executed on top of a hardware architecture inspired by
Rigetti Computing Inc. [8] (see Figure 1). We compare our
algorithm’s performance against the SABRE compiler [9], one
of the best compilers present in the Qiskit framework, and
demonstrate the superiority of our approach.

II. THE QCC PROBLEM

The problem tackled in this work consists in compiling
a given quantum circuit on a specific quantum hardware
architecture. To this aim, we focus on the Quantum Alternating
Operator Ansatz (QAOA) framework [7] a generalization of
the Quantum Approximate Optimization Algorithm (QAOA)
circuits [10], [11], a class of hybrid quantum algorithms often
used in the literature to solve problems like the Max-Cut, for
the resolution of the Graph Coloring (GC), a problem that
has so far received much less attention. The quantum circuits
that solve the benchmark problems considered in this work are
characterized by a high number of commuting quantum gates
(i.e., gates among which no particular order is superimposed)
that allow for great flexibility and parallelism in the solution,
which makes the corresponding optimization problem very
interesting and allows for an a significant depth minimization
potential to limit circuit’s decoherence [12].

Given a graph G(V,E) with n = |V | nodes and m = |E|
edges, the objective of the GC is to maximize the number



Fig. 1: Three quantum chip designs characterized by an
increasing number of qubits (N = 8, 21, 40) inspired by
Rigetti Computing Inc. Every qubit is located at a different
location (node), and the integers at each node represent the
qubit’s identifier.

of edges in E that have end points with different colours,
using for each node one among k available colours (k > 2).
Similarly to the Max-Cut problem case, the quantum state
preparation circuit within the QAOA solving framework rela-
tive to the Graph Coloring problem is divided in the following
ordered phases: (i) initial state preparation (INIT block),
(ii) phase-shift (P-S block), and (iii) mixing (MIX block). The
detailed description of the QAOA phases cannot be provided
for reasons of space; the interested reader may refer to [1].

In order to be executed, a quantum circuit must be mapped
on a quantum chip which determines the circuit’s hardware
architecture specification [13]. The chip can be seen as an
undirected multigraph whose nodes represent the qubits (quan-
tum physical memory locations) and whose edges represent
the types of gates that can be physically implemented between
adjacent qubits of the physical hardware (see Figure 1 as an
example of three chip topologies of increasing size). Since a 2-
qubit gate requiring two specific qstates can only be executed
on a pair of adjacent qubits, the required qstates must be
made nearest-neighbors (NN) prior to gate execution. NN-
compliance can be obtained by adding a number of SWAP
gates so that every pair of qstates involved in the quantum
gates can be eventually made adjacent, allowing all gates to
be correctly executed.

III. A GREEDY RANDOMIZED SEARCH ALGORITHM

In this section we provide a short description of the Greedy
Randomized Search (GRS) procedure used to compile the
circuit introduced in previous Section II. For more details,
the reader is referred to [1]. Algorithm 1 depicts the complete
randomized search algorithm for generating a near-optimal so-
lutions, which is designed to invoke the COMPILECIRCUIT()
procedure until a stop criterion is satisfied. It essentially
realizes an optimization cycle in which a new solution S is
computed at each iteration through the COMPILECIRCUIT()
algorithm. The optimization process continues until a stopping
condition (generally a max time limit) is met, where the GRS
procedure returns the best solution ever found. As can be

Algorithm 1 Greedy Randomized Search

Require: A problem P , stop criterion
Sbest ← COMPILECIRCUIT(P )
while (stopping criterion not satisfied) do
S ← COMPILECIRCUIT(P )
if (depth(S) < depth(Sbest)) then
Sbest ← S

end if
end while
return (Sbest)

readily observed, the efficacy of the GRS mainly depends on
the efficacy of the COMPILECIRCUIT() procedure (described
in the following section), which has the task of synthesizing
increasingly better solutions.

A. Compile Circuit Algorithm

The COMPILECIRCUIT() procedure is a heuristically-based
iterative algorithm that builds a solution from scratch using a
randomized ranking heuristic. This heuristic assigns a score
to the gates taking into account the “neighbouring cost” of all
the gates that have yet to be inserted in the solution. At each
iteration, a subset of gates that guarantee the fastest realization
of the neighbouring conditions of all the remaining gates is
generated and one gate is selected at random from this subset,
for insertion in the current partial solution.

The COMPILECIRCUIT() procedure takes as input a QCCP
problem, and proceeds by selecting and inserting in the partial
solution S one gate operation at a time until all the gates in
the input circuit are in S. The core of the COMPILECIRCUIT()
procedure is the function SELECTEXECUTABLEGATE() (see
[14]), which returns at each iteration either one of the gates of
the initial circuit (not yet inserted) or a SWAP gate necessary
to guarantee NN-compliance as described in the previous
Section II. This function has been explicitly designed for
minimizing the solution depth, in particular its implementation
is inspired to [15], such that the selection of a gate is based on
two criteria: (i) the earliest start time gate selection (a value
correlated to depth minimization); (ii) a metric to minimize
the number of swaps.

IV. EXPERIMENTAL EVALUATION

We have implemented and tested the proposed ideas lever-
aging the Qiskit open-source quantum-related framework [16],
the proposed procedure was implemented in Python in order
to allow its integration within Qiskit. The benchmark set for
the graph colouring circuits is obtained as an extension of
part of the N8 benchmark set for the Max-Cut problem [12].
Following the approach in [12], the graph G for which the
optimal coloring assignment needs to be found are randomly
generated as Erdös-Rényi graphs. In particular, 100 graphs are
generated for the N = 8 qubit case. Half (50 problems) are
generated by choosing N of N(N −1)/2 edges over 7 qstates
randomly located on the circuit of size 8 qubits (referred as
‘Utilization’ u = 90%). The other 50 problems are generated



Fig. 2: Comparison between GRS and SABRE

by choosing N edges over 8 qstates - referred as utilization
u = 100%). For the graph colouring benchmark, we only
consider the N8 problems with utilization u = 100%, and such
that the connected graph contains exactly 7 nodes, assigning
three colours (k = 3) to each node of the graph, for a total of
22 graph instance problems. Hence, quantum processors with
at least 21 qubits (7 nodes times 3 colours) are necessary for
the execution of such instances. More specifically, we consider
a Rigetti-inspired 21 qubit processor and set p = 2 (two PS-
mixing passes). The Python version of the proposed greedy
randomized search (GRS) algorithm compiles a QAOA circuit
with the following choices: (i) a one-hot encoding to represent
the graph-coloring problems [17], and (ii) a decomposition
procedure for the QAOA blocks based on the identification of
odd and even MIXXY gates [7], [18]. Figure 2 compares the
proposed GRS algorithm with the SABRE compiler available
in Qiskit (SabreSwap), launched according to its three different
heuristics (basic, lookahead, and decay). The algorithms are
compared with respect to the depth of the compiled circuits
(the circuit’s depth represents the longest path in the compiled
circuit graph). For each algorithm, a CPU time limit of 10
seconds is imposed on each run. From the results in Figure 2
it is clear that GRS outperforms SABRE in all the latter’s
execution modes. One possible explanation for the superiority
of GRS is its capability to better exploit the commutativity
rules of the gates in the QAOA-based Graph Coloring quantum
circuit instances. Indeed, unlike SABRE, GRS imposes no
particular order in the selection of the WN , P-S, and MIXXY

macro-gates as the solution is built, beyond the precedence
constraints originally present in the input quantum circuit.

V. CONCLUSIONS

In this paper we have considered the compilation techniques
for Noisy Intermediate-Scale Quantum (NISQ) devices [2].
In particular, we have explored the Quantum Alternating
Operator Ansatz (QAOA) framework [7] for solving opti-
mization problems and studied the quantum circuits for the
Graph Coloring reference problem. We have proposed a greedy
randomized search (GRS) algorithm targeted at optimizing
the compilation of quantum circuits and defined an original

benchmark set for testing compilation algorithms. On the
basis of our empirical validation the proposed GRS algorithm
outperforms other compilation algorithms available in the
Qiskit framework.
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Abstract—We present a general framework for the problem
of multi-class classification using classification functions that can
be interpreted as fuzzy sets. We specialize these functions in
the domain of Quantum-inspired classifiers, which are based on
quantum state discrimination techniques. In particular, we use
unsharp observables (Positive Operator-Valued Measures) that
are determined by the training set of a given dataset to construct
these classification functions.

Index Terms—Quantum state discrimination, Classification,
Pretty good measurement.

I. INTRODUCTION

In previous works, different quantum-inspired algorithms
for the classification of classical data have been developed
[4]–[7], [9]. These algorithms are based on the idea of finding
a representation of classical datasets in terms of quantum
representatives. More specifically, each feature-vector of a
dataset is encoded in a pure quantum state. This process
is called quantum encoding. Then, using classical hardware,
quantum state discrimination techniques (taken from quantum
information theory) are applied to the quantum representatives
to find a solution to the classification problem at issue. This
is the case, for example, of the Helstrom quantum classifier
(HQC), which turns out to be particularly beneficial in terms of
accuracy for binary classification [8]. The problem, however,
is that currently no direct method to extend HQC to multi-class
classification is known.

To overcome this difficulty, in this work we take inspi-
ration from the so-called Pretty Good Measurement [12] to
define a quantum-inspired multi-class classifier. The proposed
algorithm first assigns a (not necessarily projective) positive
operator-valued measure (POVM) (the Pretty Good Measure-
ment) to a given training dataset. This POVM is then used
to assign, via Born’s rule, a probability-value to each element
of the test dataset. Such a procedure allows one to define a
function that directly classifies any object of the test dataset,
without resorting to the (time consuming) strategies such as
One-vs-One or One-vs-All) that are used for classifiers that do
not natively support classification tasks with more than two

This work is partially supported by the following projects: 1) MIUR,
project PRIN 2017: Theory and applications of resource sensitive logics (code:
20173WKCM5). 2) MIUR project PRIN 2017: Logic and Cognition: theory,
experiments, applications (code: 20173YP4N3). 3) FdS project: Ubiquitous
Quantum Reality (UQR): understanding the natural processes under the light
of Quantum-like structures.

classes.1 We refer to this algorithm as the PGM classifier.
Just like the Helstrom classifier, the PGM classifier, being
quantum-inspired, brings a concrete computational advantage
when running on fully classical hardware. The main goal of
this work is to provide a precise mathematical description of
the PGM classifier algorithm.

II. GENERAL SETTING FOR QUANTUM-INSPIRED
CLASSIFICATION

By following standard supervised classification, each object
x is associated with a vector ~x (called object-vector or feature-
vector) of a d-dimensional Hilbert space Hd. 2 A pattern is
defined as a pair ( ~xj , λj) where ~xj is a feature-vector and λj
is the class label which denotes the class which the object is
supposed to belong to. For simplicity, we identify the set L
of all class-labels with a finite sequence (1, . . . , `) of natural
numbers that are in one-to-one correspondence with the `
classes which the objects belong to. Thus, a training dataset
can be represented as a set Str := {(~x1, λ1), . . . (~xm, λm)},
where ∀j ∈ {1, . . . ,m}: λj ∈ L. Given any class label i ∈ L,
we can define the set Sitr of all object-vectors whose associated
class label is i:

Sitr := {~xj ∈ Str : λj = i}. (1)

The cardinality of Sitr is denoted by |Sitr|. Clearly,∑`
i=1 |Sitr| = m. The task of supervised classification is

to infer a classifier-function (simply, a classifier) from the
training dataset that assign, as accurately as possible, a class-
label to any object-vector ~x. Formally, a classifier can be
defined as a map Cl : Cd → L.

Let Str = {(~x1, λ1), · · · , (~xm, λm)} be a training dataset.
In order to define a classifier (based on Str) one defines a map
f (called “learning function”) that associates to any feature-
vector ~x a sequence of `-numbers belonging to the unit real-
interval [0, 1]: f : Cd → [0, 1]`. The ith-component of f(~x)
will be denoted by f(~x)i.

The interpretation of the i−th component of f(~x) depends
on the intended meaning of the function f itself. For example,
if one adopts a “fuzzy perspective”, the value f(~x)i may

1A numerical comparison between these approaches is analyzed in a
separate work [2].

2Unlike standard representations in machine learning, we do not exclude
features that can be represented as complex numbers.



represent the degree of membership of the object x (whose
object-vector is ~x) to the class labeled by λi. Thus, any label
i determines a fuzzy set fi : Rd → [0, 1] such that for
any ~x ∈ Rd, fi(~x) = f(~x)i. In a probabilistic framework,
instead, f(~x) is assumed to be a probability-vector (i.e.∑`
i=1 f(~x)i = 1) and the value f(~x)i can be interpreted as the

probability that the object x (with associated feature-vector ~x)
belongs to the class labeled by i.

The classifier determined by f (or simply, the f -classifier)
is the map Clf : Cd → L that assigns to any feature-vector
~x ∈ Cd the class-label that is associated to the greatest value
of f(~x)i, with 1 ≤ i ≤ `.

Since it may happen that f returns more than one class-label
when there are matching f(~x)i values, we pose by convention

Clf (~x) := min {i ∈ L : f(~x)i = max {f(~x)k : 1 ≤ k ≤ `}} .
(2)

A classifier Clf is called probabilistic iff for any ~x ∈ Cd
we have:

∑`
i=1 f(~x)i = 1. In other words, a classifier is

probabilistic iff for any ~x the sequence (f(~x)1, . . . , f(~x)`) is
a probability-vector.

The task of supervised classification is to infer a classifier-
function (simply, a classifier) from the training dataset that
assign, as accurately as possible, a class-label to any object-
vector ~x.

Formally, a classifier can be defined as a map

Cl : Cd → L.

Given a training dataset, the construction of a quantum
classifier is based on three basic steps: i) applying a quantum
feature map (or quantum encoding) to encode the object-
vectors of the training dataset into quantum objects [7]; ii)
finding a suitable learning function f that determines the
quantum classifier; iii) applying the quantum classifier to a
quantum-encoded object-vectors to obtain the labels of the
classes which the objects belong to.

Let us consider a training dataset Str =
{(~x1, λ1), · · · , (~xm, λm)}. A quantum encoding is a
map that associates with any object-vector ~x of Cd a pure
quantum state (called object quantum-state) ρ~x of a Hilbert
space Cn, whose dimension n depends on the number of the
d-features. Given a quantum encoding ~x 7→ ρ~x, a quantum
pattern is any pair (ρ ~xj

, λj). A quantum training dataset is
defined as the set of all quantum patterns:

SQtr := {(ρ~x1
, λ1), . . . , (ρ~xm

, λm)} .
Given any class label i ∈ L, we can also define the set SiQtr

as the set of all object quantum-states ρ~xj
that are associated

to the set Sitr of all i-object-vectors:

SiQtr := {ρ~xj
: ~xj ∈ Sitr}. (3)

Similarly to the case of the Nearest-Mean Classifier where
one associates to any class of object-vectors its centroid, in
our quantum-inspired approach, one can define the crucial
notion of quantum centroid. Intuitively, the quantum centroid

associated to the class-label i is the density operator (in
an appropriate Hilbert space) that represents the uniform
sampling of all i-object quantum states.

Definition 2.1: Let i ∈ L be a class-label. The quantum
centroid associated to i (denoted by ρ(i)) is:

ρ(i) :=
1

|SiQtr|
∑

~xj∈Si
tr

ρ~xj
,

where |SiQtr| is the cardinality of SiQtr. Clearly, |SiQtr| = |Sitr|.
As one can easily realize, the ` class-labels are in one-to-one

correspondence with the set {ρ(1), . . . , ρ(`)} of all quantum
centroids.

Let Str = {(~x1, λ1), . . . (~xm, λm)} be a quantum training
dataset. How to define a possible “quantum learning function”
f in terms of SQtr? As happens in the classical case, different
answers are possible. In our approach we take the move to
interpret the set of all class-labels as possible outcomes of
a measurement. Let us briefly recall the notion of (quantum)
measurement.

Let B(H)+ be the set of all positive semidefinite operators
acting on a finite dimensional Hilbert spaceH. A measurement
is defined as a map M from a finite non-empty set O
(representing a set of possible outcomes of a physical quantity)
into B(H)+ such that

∑
i∈MO(i) = I. A measurement is

said to be a von Neumann measurement iff every M(i) is a
projection, i.e., M(i)∗ =M(i)M(i) =M(i), where M(i)∗

is the adjoint of M(i).
A quantum classifier is a classifier Clf , where the function

f is determined by a measurement M : L → B(H)+ (see
[12], Definition 2.34). More precisely:

Definition 2.2: A quantum classifier is a classifier Clf (see
Equation(2)) such that the learning function f : Cd → [0, 1]`

satisfies the following condition: there exists a measurement
M : L→ B(H)+ such that

∀~x ∈ Cd : f(~x)i = tr(M(i)ρ~x),

where tr is the trace of a matrix.
Intuitively, the i-th component f(~x)i of the learning func-

tion f represents the probability that the object encoded by ρ~x
belongs to the class i.

An interesting question is whether classification accuracy
can be improved by increasing the dimension of the state space
where the object quantum-states live.

Although computation in a larger feature space generally
increases runtime, the expected improvement in prediction
accuracy is crucial in certain machine learning applications,
such as those specialized in medical diagnosis.

In our case, the dimensional increasing of the feature space
is obtained by encoding any object-vector ~x as a tensor product
ρ~x⊗ . . .⊗︸ ︷︷ ︸

n-times

ρ~x of the object quantum-states ρ~x. Accordingly,

the set of all object quantum-states that are associated to the



n-copies of all i-objects is defined by tensorizing the object
quantum-states in SiQtr:

Si(n)

Qtr := {ρ~xj
⊗ . . .⊗︸ ︷︷ ︸
n-times

ρ~xj
: ~xj ∈ Sitr}.

Accordingly, the n-copy quantum centroid of Si(n)

Qtr can be
defined as follows:

ρ
(n)
(i) :=

1

|SiQtr|
∑

~xj∈Si
tr

ρ~xj
⊗ . . .⊗︸ ︷︷ ︸
n-times

ρ~xj
. (4)

It should be noticed that, in general, ρ(n)(i) 6= ρ(i)⊗ . . .⊗ ρ(i)︸ ︷︷ ︸
n-times

.

The ⊗n-generalization of the quantum classifier introduced
in Definition 2.2 can now be naturally defined as a func-
tion f : Cdn → [0, 1]` determined by a measurement
M : L → B(⊗nCd)+. As we will show in the sequel,
this procedure turns out to be advantageous in improving
classification accuracy.

III. PRETTY GOOD MEASUREMENT AND MULTI-CLASS
CLASSIFICATION

Given an ensemble of possible states (generally more than
two) with their respective a priori probabilities

R = {(p1, ρ1), · · · , (p`, ρ`)}, (5)

it may be difficult to find an analytical description for
the exact optimal measurement Opt(R) associated to R. One
possible solution is to search for a sub-optimal measurement
that can be expressed in an analytical form. This is known as
the so-called Pretty Good Measurement [12], which we will
introduce in the following. Let us define the average state of
R as

σ =
∑̀

i=1

piρi.

For each i : 1 ≤ i ≤ `, let us define the following operator

Ei = (σq)1/2piρi(σq)1/2,

where σq is the pseudoinverse (or Moore-Penrose inverse) of
σ. It can be seen that

∑`
i=1Ei = Pim(σ), where Pim(σ) is

the projection onto the subspace spanned by the image of σ.
The set {Ei}`i=1 does not determine a measurement since in
general

∑`
i=1Ei < I. For each i with 1 ≤ i ≤ `, let us define

the following operators: Fi := Ei +
1
`Pker(σ), where Pker(σ)

is the projection onto the subspace spanned by the kernel of
σ. It turns out that the map F : {1, 2, · · · , `} → B(Cn)+
such that for any i ∈ {1, . . . , `} F(i) = Fi is a measurement,
called Pretty Good Measurement or, shortly, PGM. It turns
out the PGM F is sub-optimal since pFsucc(R) ≥ Opt(R)2.
Let us now turn to the general problem of multi-class classi-
fication. After the quantum encoding procedure, we consider
the quantum training datasets SiQtr as defined in Equation (3)
and their respective quantum centroids ρ(i) as defined in

Definition 2.1. Hence, it is possible to consider the ensemble
R as defined in Equation (5) where, as in the Helstrom case,
the a priori probability-values are assumed to be equal, i.e.,
for any i ∈ {1, . . . , `} : pi = 1

` . Thus, we can associate to R a
Pretty Good Measurement. In this case, the learning function
f is defined as follows:

∀~x ∈ Cd,∀i ∈ {1, . . . , `} : f(~x)i := tr(Fiρ~x).

According to Definition 2.2, the multi-class quantum clas-
sifier determined by f , called Pretty Good Classifier (PGM
classifier), is defined as follows:

Clf (~x) :=min{i ∈ {1, · · · , `} :
tr(Fiρ~x) = max{tr(Fkρ~x) : 1 ≤ k ≤ `}}.

Notice that if Pker(σ) = O, we can replace Fi by Ei in the
above equation.

We can also generalize this framework by taking the tensor
product of n-copies of states. Thus, the definition of the multi-
class quantum classifier can be naturally extended as:

Clf (~x) :=min{i ∈ {1, · · · ,m} :
tr(F

(n)
i ρ

(n)
~x ) = max{tr(F (n)

k ρ
(n)
~x ) : 1 ≤ k ≤ `}}.

As a final remark, let us notice that the PGM not only
performs very well in terms of accuracy, but also avoids to
decompose an n-ary classification into a combinatorial number
of binary classifications, as required by the standard “One
versus One” or “One versus Rest” procedures. A detailed
experiment comparing the performance of PGM with other
standard classifiers is presented in [2].”
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Abstract—Recently, there has been a growing interest in inves-
tigating the role of emergent topics, such as quantum computing,
in the design of efficient fuzzy inference engines to overcome some
issues such as the rule explosion problem. In this scenario, the
Quantum Fuzzy Inference Engine (QFIE) could play a pivotal
role due to its ability to generate an exponential computational
advantage over conventional fuzzy inference engines. However,
there are no practical demonstrations that the current generation
of quantum computers can reliably run QFIE to efficiently
manage complex systems. This paper bridge this gap by using,
for the very first time, QFIE to control critical systems such
as those related to particle accelerator facilities at the European
Organization for Nuclear Research (CERN). As demonstrated by
a series of experiments performed at the Advanced Proton Driven
Plasma Wakefield Acceleration Experiment (AWAKE), QFIE is
able to efficiently control such an environment, paving the way
for the use of fuzzy-enabled quantum computers in real-world
applications.

Index Terms—Quantum computing, fuzzy control systems,
Particle Accelerators.

I. INTRODUCTION

Fuzzy sets and logic theory introduced by Lofti Zadeh [1],
[2] has the capability of model classes of objects that do not
have precisely defined criteria of membership, in a way to
mimic human thinking on computers. Starting from Zadeh’s
theory of fuzzy logic, Fuzzy Rule-Based Systems (FRBSs)
have been developed and they have found a widespread set
of applications in the field of automatic control and decision-
making [3], [4]. The reason for this success can be explained
by the fact that expert knowledge is easily introduced into
these systems using fuzzy rules. Despite their success, FRBSs
suffer from the so-called fuzzy rule explosion problem: The
number of rules in a FRBS grows exponentially with the
number of variables that make up the system. This problem
severely limits the ability of FRBS to handle systems with a
large number of variables.. Recently, the emergent quantum
computing paradigm has been explored to implement a new
generation of efficient fuzzy inference engines to potentially
overcome the critical limitation of FRBSs. The first quantum
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fuzzy inference engine, known as QFIE, has been developed
in [5]: it uses massive parallelism provided by quantum phe-
nomena, such as superposition and entanglement, to reach an
exponential advantage in computing fuzzy rules with respect
to the classical counterpart. However, this quantum engine
has only been tested on control applications characterized
by simple dynamics, such as inverse pendulum, and, as a
result, there is no concrete evidence of its operational usability.
This paper fills this gap by exploring the potential of QFIE
in an important area such as the automatic control of par-
ticle accelerators at the European Organization for Nuclear
Research (CERN), achieving a twofold result. On the one
hand, this research proves that QFIE can be used reliably
in complex application scenarios, and on the other hand, it
demonstrates that fuzzy logic and FRBS are suitable methods
for supporting particle physics experiments at CERN. In fact,
QFIE has been shown to reliably support automatic control of
particle accelerators that are currently manually tuned due to
lack of models or beam instrumentation. The advantages of
using QFIE in the automatic control of particle accelerators
have been demonstrated in an experimental setting related
to the CERN facility known as the Advanced Proton Driven
Plasma Wakefield Acceleration Experiment (AWAKE). QFIE
was used to implement a complex 10-dimensional control
system by using a quantum simulation, due to the limitations
that characterize the current generation of quantum computers,
known as Noisy-Intermediate-Scale Quantum (NISQ) devices.
The suitability of QFIE in dealing with the above CERN
facility has been assessed in terms of sample efficiency, i.e.
the number of actions performed by the controller to achieve
the desired behavior of the particle beam. Indeed, optimizing
this kind of efficiency is essential in the context of accelerator
operation to minimize the impact on the beam time available
for physics experiments.

II. QFIE FOR PARTICLE ACCELERATORS CONTROL

The Advanced Wakefield Experiment (AWAKE) at CERN
uses high-intensity 400 GeV proton bunches from the Super
Proton Synchrotron (SPS) as a plasma wakefield driver. Elec-
tron bunches are simultaneously steered into the plasma cell
to be accelerated by the proton-induced wakefields. Electron
energies up to 2 GeV have been demonstrated over a plasma
cell of 10 m length corresponding to an electric field gradient
of 200 MV/m [6]. The ultimate goal for AWAKE is to reach a
field gradient of 1 GV/m. These numbers are to be compared
to conventional accelerating structures using radio-frequency
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Fig. 1. Fuzzy Partitions for QFIE10 Input 1(a), 1(b) and Output 1(c) variables.

(rf) cavities in the X-band regime, which are currently lim-
ited to accelerating field gradients of about 150 MV/m [7].
The AWAKE electron source and beam line are particularly
interesting for algorithm preparation and testing due to the
high repetition rate and insignificant damage potential in case
of losing the beam at accelerator components. The AWAKE
electrons are generated in a 5 MV photocathode rf gun, accel-
erated to 18 MeV and then transported through a beam line of
12 m to the AWAKE plasma cell. The trajectory is controlled
with 10 horizontal and 10 vertical steering dipoles according
to the measurements of 10 BPMs (per plane). The BPM
electronic read-out is at 10 Hz and acquisition through the
CERN middleware is at 1 Hz. The goal was to develop a QFIE-
based controller able to correct the horizontal trajectory with
similar accuracy as the response matrix-based singular value
decomposition (SVD) algorithm that has been traditionally
used [8]. The input state of the controller is formalized as a 10-
dimensional vector of horizontal beam position measured with
respect to the reference trajectory. Accordingly, the controller
action is a 10-dimensional vector of corrector dipole magnet
kick angles within a range of ±300µrad. To evaluate the
performance of the controller, a reward function is used that
consists of the negative root-mean-squared (rms) of the mea-
sured beam trajectory with respect to the reference at all the
BPMs. Developing a single QFIE controlling simultaneously
all the corrector dipole magnets along the AWAKE trajectory
would reflect in a quantum circuit too big for being classically
simulated or executed on a current NISQ device. Therefore
to solve the control problem an approach based on the D-
NISQ reference model proposed in [9] has been exploited:
the original 10-dimensional problem was divided into ten 1-
dimensional control problems, where each corrector dipole
magnet Ki with i ∈ [1, 10] is controlled by a QFIE, QFIEi

with i ∈ [1, 10]. Each QFIEi ∀i ∈ [2, 10] acts considering
two input variables xi and dki, where the former refers to
the distance from the ideal position of the beam registered
by the corresponding BPMi, while the latter refers to the
sum of the deviation carried out by the magnets that are
placed previously to the i-th magnet on the AWAKE beam
line. Formally, denoting with ŷi the corrector dipole magnet
kick angles computed by QFIEi, the dkm input variable for
QFIEm is defined as follows:

dkm =
m−1∑

i=1

ŷi. (1)

The action of QFIE1 depends just on the position of
the particle beam at the first beam position monitor along
the trajectory. In detail, dki is defined in an interval [-2,2]
∀i ∈ [2, 10]; xi is defined in an interval [-1,1] ∀i ∈ [1, 10];
the output corrector dipole magnet kick angles yi are defined
in the normalized interval [-1,1] ∀i ∈ [1, 10] .

The fuzzy partitions used for the variables of each
QFIEi are the same. In particular, Fig. 1 shows them for
QFIE10. Moreover, Fig. 2(a) shows the fuzzy rule base for
QFIEi ∀i ∈ [2, 10], while Fig. 2(b) shows the fuzzy rule
base for QFIE1.

(a) (b)

Fig. 2. Rule set for QFIEi ∀i ∈ [2, 10] (a) and QFIE1 (b). The
conjunction of the elements of the first row and column represents the
antecedent part of a fuzzy rule having as consequent the corresponding matrix
element. For instance, the first rule in QFIEi corresponds to the sentence
If dki is Very Negative and xi is Very Negative then the correction angle is
Very Positive.

To minimize the number of interactions of the whole con-
troller with the environment a bias factor b has been multiplied
by the ten QFIEs output. Formally, denoting with ŷi the
output computed by QFIEi, the final corrector dipole magnet
kick angle yi used to modify the environment state is obtained
as follows:

yi =





ŷi · b if ŷi · b ∈ [−1, 1]
1 if ŷi · b > 1

−1 if ŷi · b < −1
(2)

In our experiments, b has been set to 10.

III. ONLINE TESTS ON REAL AWAKE ENVIRONMENT

The QFIE-based FRBS was evaluated on the real AWAKE
environment to test sim-to-real transfer. Figure 3 shows the
histograms reporting the obtained results: QFIE has been
tested by considering four different levels of reward objective
threshold value, -2 mm (Fig. 3(a)), -1.6 mm (Fig. 3(b)), -1.2
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(a) rms = 2 mm (b) rms = 1.6 mm (c) rms = 1.2 mm

(d) rms = 0.8 mm

Fig. 3. Online experiments on the real AWAKE beam line. Each plot refers to a different value of rms threshold.

mm (Fig. 3(c)) and -0.8 mm (Fig. 3(d)). A lower absolute
reward value reflects in more precise control of the particle
beam. For each threshold value, 20 independent episodes
were collected. Histograms in Fig. 3 report respectively the
distribution of the number of interactions environment-control
required to reach the desired rms value, the distribution of
the 20 initial state reward values and the distribution of the
20 final state reward values. As highlighted by the plots, the
QFIE-based controller is able to solve the control problem
also in the real AWAKE environment. Indeed the objective
reward value is reached in 100% of the episodes considered.
The number of steps required to achieve such an impressive
result is in line with the simulated environment, except for an
outlier in the scenario with an rms threshold equal to 0.8 mm.

IV. CONCLUSION

In this work, a QFIE-based FRBS [5] has been experi-
mentally tested for the very first time to control real-world
environments, such as those related to particle physics ac-
celerators at CERN facilities. The main result obtained from
this research is twofold: on the one hand, it has been shown
that QFIE is able to control these complex environments; on
the other hand, it has been proved that FRBSs could be a
valid tool for real-time control of particle accelerators for
the physics experiments at CERN. In detail, the research was
carried out on the AWAKE use case, where the 10-dimensional
environment is much more complex and current NISQ devices
are not ready to handle the resulting QFIE circuits. In this
case, the simulated quantum circuits were tested on real data
as an online controller of the beam line. This result proves
for the very first time the capability of a FRBS to control a

real particle accelerator. In the future QFIE based FRBS will
be developed and tested for more complex experiments and
environments, where no analytical solutions are available to
control the systems. Moreover, further tests on real quantum
hardware execution of quantum circuits implementing QFIE
will be carried out.
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Abstract—Optimization is one of the research areas where
quantum computing could bring significant benefits. In this
scenario, a hybrid quantum-classical variational algorithm, the
Quantum Approximate Optimization Algorithm (QAOA), is
receiving much attention for its potential to efficiently solve
combinatorial optimization problems. This approach works by
using a classical optimizer to identify appropriate parameters of
a problem-dependent quantum circuit, which ultimately performs
the optimization process. Unfortunately, learning the most appro-
priate QAOA circuit parameters is a complex task that is affected
by several issues, such as search landscapes characterized by
many local optima. Moreover, gradient-based optimizers, which
have been pioneered in this context, tend to waste quantum
computing resources. Therefore, gradient-free approaches are
emerging as promising methods to address this parameter-setting
task. Following this trend, our published work [1] proposes, for
the first time, the use of genetic algorithms as gradient-free meth-
ods for optimizing the QAOA circuit. The proposed evolutionary
approach has been evaluated in solving the MaxCut problem for
graphs with 5 to 9 nodes on a noisy quantum device. As the results
show, the proposed genetic algorithm statistically outperforms the
state-of-the-art gradient-free optimizers by achieving solutions
with a better approximation ratio.

Index Terms—Genetic Algorithms, Quantum Approximate Op-
timization Algorithm, Quantum Computing, Quantum Optimiza-
tion algorithms.

I. INTRODUCTION

In the field of quantum optimization research, the Quantum
Approximate Optimization Algorithm (QAOA) is receiving
much attention for its potential to efficiently solve combina-
torial optimization problems. Indeed, since its introduction,
QAOA has been applied to several different problems such as
the tail assignment problem [2] and max k-coloring [3]. In
detail, QAOA belongs to the category of variational quantum
algorithms since it follows a hybrid classical-quantum scheme.
Precisely, a quantum computer is used to run a quantum
circuit characterized by free real parameters that computes the
solution to the optimization problem, whereas, a classical com-
puter is used to find the optimal values for these parameters.
Typically, to achieve this goal, a classical optimizer is used. In
general, this uses an iterative approach that starts with a guess
of the optimal parameters. Then, in each iteration, the quantum
circuit is run with the current values for the parameters to
obtain the result of the optimization process and this result
is evaluated by a cost function to update the quantum circuit

parameters accordingly until a termination criterion, such as
the number of iterations, is reached.

Unfortunately, the task of optimizing the parameters of the
QAOA quantum circuit could be difficult due to several issues.
In particular, recent studies have shown that the search land-
scape in QAOA is non-convex and contains many local minima
[4]. Moreover, as aforementioned, the optimization process of
the QAOA quantum circuit exploits the quantum computer
which is a resource that should not be wasted. Therefore, a
classical optimizer is good when it performs few calls to the
quantum device. The first classical optimizers used for QAOA
were the gradient-based approaches due to their success in
the classical learning approaches. However, gradient-based
approaches tend to fall into local minima and make multiple
calls to quantum devices to compute the derivatives of the cost
function. Hence, the idea of applying gradient-free approaches
which consist of optimization methods that do not rely on the
derivatives of the cost function are emerging. The first attempts
to apply gradient-free optimizers are promising as reported in
the work of Fernández-Pendás et al. [5], but finding a good
classical optimizer that guarantees a good performance for
QAOA is still an open issue.

Starting from these considerations, our published work [1]
proposes, for the first time, to apply an evolutionary approach,
and in particular, genetic algorithms to the task of optimiz-
ing the QAOA parametrized quantum circuit. The proposed
genetic algorithm follows a standard structure equipped with
elitism. The solution of the optimization problem addressed by
the proposed genetic algorithm represents the set of real pa-
rameters of the QAOA circuit. The suitability of the proposed
approach is shown in an experimental session involving the
application of the proposed evolutionary approach to optimize
the QAOA quantum circuits devoted to solve the MaxCut
problem by considering graph instances with 5 to 9 nodes. The
experiments are carried out on a noisy quantum processor in
order to show the performance of the proposed approach in a
real not ideal scenario. As shown by the results, the proposed
genetic algorithm statistically outperforms the state-of-the-art
gradient-free approaches by achieving better solutions in terms
of a well-known metric in the optimization domain, namely
the approximation ratio.



II. A GENETIC ALGORITHM AS CLASSICAL OPTIMIZER
FOR QAOA

The goal of our published work [1] is to investigate a
Genetic Algorithm (GA) as a classical optimizer to find
the set of the optimal circuit parameters in QAOA. Firstly,
this proposal is motivated by the drawbacks suffered by the
gradient-based approaches. Furthermore, QAOA performance
increases when the number of circuit parameters increases.
In this scenario where the solution of the optimization task
related to QAOA circuit parameters is characterized by high
dimensionality, population-based metaheuristics could be more
efficient to manage and examine the candidate solutions than
the other basic gradient-free optimizers, typically based on
approximation or direct search approaches beginning from
only a single point. In addition, starting from an initial random
population of possible solutions to the problem at hand, GAs
search the sub-optimal solution by applying proper stochastic
operators, and not deterministic rules.

Briefly, the optimization process of GAs is inspired by
the principle of the Darwinian evolution, such as the natural
selection: the initial population evolves stochastically toward
better solutions thanks to the survival of the fittest solutions
over the generations. Each candidate solution to the problem
at hand, denoted as chromosome, is represented by a string of
numbers, denoted as genes [6]. To evaluate the quality of each
chromosome, it is necessary to define a proper fitness function,
represented by the cost function in the case of problems to
be minimized. This means that the fittest solutions are the
chromosomes with the smallest cost values. After generating
randomly the initial population of chromosomes, the evolution
process takes place in successive iterations, denoted as genera-
tions. Each generation involves the application of the so-called
genetic operators, such as selection, crossover and mutation.
Among the different selection mechanisms, we employ the
tournament selection due to its proved efficiency [7], [8]. As
for the crossover and the mutation operators, the Uniform
crossover and the Gaussian mutation are selected, respectively,
because they represent an adequate choice for real-coded
chromosomes. Typically, during the evolution process, the
best chromosome of the current generation is inserted into
the next one in order to prevent its possible disappearance.
Therefore, the proposed genetic algorithm applies this elitism
strategy to maintain the fittest chromosome found throughout
the generations. Generations are repeated until a termination
criterion is reached.

III. EXPERIMENTS AND RESULTS

This section reports the experimental set up used in [1] to
evaluate the performance of the proposed GA for solving the
MaxCut problem by means of QAOA, in comparison with the
traditional gradient-free optimizers. Then, the main results ob-
tained by the compared gradient-free optimizers are discussed
in terms of the measure, named quantum approximation ratio,
and by performing the Wilcoxon signed rank test [9].

A. Experimental setup

In our work, experiments involve graphs with nodes n
from 5 to 9. In particular, we have collected a subset of
graph instances described in [10] and accessible at a public
repository1. The MaxCut problem is solved for each graph
with n nodes by means of QAOA. For each problem instance
the QAOA circuit is made up of p variational layers, each of
which consists of a so-called cost layer depending on the graph
structure, and a so-called mixer layer. In order to investigate
the performance of the classical optimizer by considering
different sizes of the QAOA circuit, in our experimentation,
three values for the factor p were used, i.e. p = 3, 5, 7.
Indeed, increasing the p value leads to increase the number of
layers, and as a consequence, the number of gate parameters.
The QAOA circuits are implemented using Qiskit™, an open-
source framework written in Python programming language
and provided by IBM. To run QAOA circuits, the used
quantum device is the noisy simulator, namely Fake Montreal,
made available by Qiskit™ and equipped with 27 qubits.

The gradient-free optimizers taken into account for the
comparison with the proposed GA are the ones already ap-
plied to optimize QAOA: namely, Constrained Optimization
BY Linear Approximation (COBYLA) method, Nelder–Mead
method, Modified Powell’s method, Simultaneous Perturbation
Stochastic Approximation (SPSA) method. The implementa-
tion of these methods is offered by Qiskit and Scipy Python
modules. The hyper-parameter configurations used for these
methods are those set by default by the corresponding Python
libraries as already done in the work [5]. As for the configura-
tion of the proposed GA, the values for hyper-parameters have
been set to typical ones because of the difficulty of performing
a tuning procedure due to the long time of computation. In
detail, the configuration of the proposed GA used in our
experiments is: pop size = 10, k = 3, pc = 0.7, pg = 0.5,
pm = 0.25, µ = 0 and σ = 0.1. In order to perform a fair
comparison and to investigate the advantages of the proposed
GA in comparison to the other gradient-free techniques by
considering the same effort and employment of the quantum
resources, all the involved classical optimizers stop when the
maximum number of cost function evaluations, set to 500, is
reached. This value corresponds to the number of queries to
the quantum device. Indeed, every time the optimizer explores
a possible solution, a quantum query to the quantum device
is needed to compute the corresponding cost value. Because
the optimization process strongly depends on the initialization
procedure, 50 independent runs (n runs = 50) for each
classical optimizer and for each combination of the values of
p and n are executed. In order to carry out a fair comparison,
in each run, the random seed used to generate the initial values
of the gate parameters is fixed, so that all the optimizers have
been initialized in the same way. Furthermore, in the case of
GA, the initial random population contains the chromosome
with the same initial values of the gate parameters fed into the

1https://code.ornl.gov/qci/qaoa-dataset-version1/-/tree/master/Graphs



other optimizers. At the end of each run, the best cost value
reached is stored.

In order to evaluate the performance of the compared clas-
sical optimizers, the measure r named quantum approximation
ratio is used. In detail, this measure is defined as follows:

r =
⟨C⟩
Cmax

(1)

where ⟨C⟩ is the optimal expectation value of the cost function
reached by the optimizer for a given graph, and Cmax is
the global optimal value for that graph. As a consequence,
the higher the value of r, the better is the performance of
the classical optimizer. The value 1 represents the optimal
result. Moreover, in the paper, we denote the average quantum
approximation ratio ra as:

ra =
1

n runs

n runs∑

t=1

⟨Ct⟩
Cmax

(2)

where ⟨Ct⟩ is the optimal expectation value of the cost
function reached by the optimizer for a given graph in the
t-th run, Cmax is the global optimal value for that graph, and
n runs is the number of runs set to 50 in our experimentation
as aforementioned.

Moreover, in order to investigate the significance of the
impact of the proposed GA on the other classical gradient-
free optimizers, a statistical test is conducted by applying the
non-parametric statistical method known as Wilcoxon signed
rank test.

B. Results and discussion

This section summarizes the obtained results for solving
the MaxCut problem for all the graph instances with different
number of nodes n at different values of p in terms of
quantum approximation ratio. As it is possible to see in [1],
GA achieves high values of average quantum approximation
ratio values for all the considered test graphs. Indeed, the
mean of the average quantum approximation ratio is always
higher than 0.8. Moreover, GA outperforms all the other
classical optimizers by considering all metrics (i.e., minimum,
maximum, mean, and median) related to the average quantum
approximation ratio values, except for n = 8 and p = 3
where SPSA is characterized by a maximum average quantum
approximation ratio higher than GA.

In order to give significance to these results, the Wilcoxon’s
test has been applied between our GA and each one of the
compared classical optimizers for each combination of values
of p and n. Each sample related to a classical optimizer is
composed of 20 elements where each element is related to a
graph and represents the average quantum approximation ratio
for this graph. The statistical significance of the the Wilcoxon’s
test is expressed by p-values for the pairwise comparisons
involving GA and another approach for all combinations of
values of p and n. In detail, the one-sided version of the test
is considered where the null hypothesis is the equivalence of
the two compared algorithms and the alternative one states,
instead, that GA is better than the compared approach. The null

hypothesis is rejected when the reported p-value is less than
the typical significance level α = 0.05. Therefore, rejecting
the null hypothesis in the pairwise comparisons leads to state
that GA statistically outperforms the compared approach at
95% confidence level. The null hypothesis is always rejected
except for the pairwise comparison involving GA and SPSA in
the case n = 8 and p = 3. Hence, GA statistically outperforms
at 95% confidence level all compared classical optimizers for
all combinations of the values n and p, except for the case
n = 8 and p = 3 against SPSA. However, it is important to
note that GA statistically outperforms SPSA in all other cases,
hence, also when the problem instances for the case n = 8
become more complex, i.e., with p = 5 and p = 7.

IV. CONCLUSION

Our published work [1] proposes, for the first time, the
use of evolutionary algorithms, and in particular genetic al-
gorithms, to optimize QAOA circuit parameters. The ben-
efits provided by the proposed approach have been proved
by means of a comparative study with the state-of-the-art
gradient-free optimizers (COBYLA, Nelder-Mead, Powell’s
modified method and SPSA) in solving the MaxCut problem
for a specified set of graphs with 5 to 9 nodes at fixed
queries of the noisy quantum device. The experiments involved
a different number of QAOA parameters to be optimized
with increasing values of the parameter p, in order to test
the proposed algorithm when QAOA provides reasonable
performance in solving optimization problems. As the results
of the experimental session show, GA achieves high values
of the approximation ratio for all considered test graphs. In
addition, GA statistically outperforms state-of-the-art gradient-
free optimizers at the 95% confidence level.
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